Search tips
Search criteria

Results 1-22 (22)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Whole-Genome Sequencing of Erwinia amylovora Strains from Mexico Detects Single Nucleotide Polymorphisms in rpsL Conferring Streptomycin Resistance and in the avrRpt2 Effector Altering Host Interactions 
Genome Announcements  2014;2(1):e01229-13.
We report draft genome sequences of three Mexican Erwinia amylovora strains. A novel plasmid, pEA78, was identified. Comparative genomics revealed an rpsL chromosomal mutation conferring high-level streptomycin resistance in two strains. In the effector gene avrRpt2, a single nucleotide polymorphism was detected that overcomes fire blight disease resistance in Malus × robusta 5.
PMCID: PMC3900913  PMID: 24459281
2.  Transcriptional profile of Salmonella enterica subsp. enterica serovar Weltevreden during alfalfa sprout colonization 
Microbial Biotechnology  2013;7(6):528-544.
Sprouted seeds represent a great risk for infection by human enteric pathogens because of favourable growth conditions for pathogens during their germination. The aim of this study was to identify mechanisms of interactions of Salmonella enterica subsp. enterica Weltevreden with alfalfa sprouts. RNA-seq analysis of S. Weltevreden grown with sprouts in comparison with M9-glucose medium showed that among a total of 4158 annotated coding sequences, 177 genes (4.3%) and 345 genes (8.3%) were transcribed at higher levels with sprouts and in minimal medium respectively. Genes that were higher transcribed with sprouts are coding for proteins involved in mechanisms known to be important for attachment, motility and biofilm formation. Besides gene expression required for phenotypic adaption, genes involved in sulphate acquisition were higher transcribed, suggesting that the surface on alfalfa sprouts may be poor in sulphate. Genes encoding structural and effector proteins of Salmonella pathogenicity island 2, involved in survival within macrophages during infection of animal tissue, were higher transcribed with sprouts possibly as a response to environmental conditions. This study provides insight on additional mechanisms that may be important for pathogen interactions with sprouts.
PMCID: PMC4265072  PMID: 24308841
3.  Draft Genome Sequences of the Onion Center Rot Pathogen Pantoea ananatis PA4 and Maize Brown Stalk Rot Pathogen P. ananatis BD442 
Genome Announcements  2014;2(4):e00750-14.
Pantoea ananatis is an emerging phytopathogen that infects a broad spectrum of plant hosts. Here, we present the genomes of two South African isolates, P. ananatis PA4, which causes center rot of onion, and BD442, isolated from brown stalk rot of maize.
PMCID: PMC4125770  PMID: 25103759
4.  Comparative Genomics of 12 Strains of Erwinia amylovora Identifies a Pan-Genome with a Large Conserved Core 
PLoS ONE  2013;8(2):e55644.
The plant pathogen Erwinia amylovora can be divided into two host-specific groupings; strains infecting a broad range of hosts within the Rosaceae subfamily Spiraeoideae (e.g., Malus, Pyrus, Crataegus, Sorbus) and strains infecting Rubus (raspberries and blackberries). Comparative genomic analysis of 12 strains representing distinct populations (e.g., geographic, temporal, host origin) of E. amylovora was used to describe the pan-genome of this major pathogen. The pan-genome contains 5751 coding sequences and is highly conserved relative to other phytopathogenic bacteria comprising on average 89% conserved, core genes. The chromosomes of Spiraeoideae-infecting strains were highly homogeneous, while greater genetic diversity was observed between Spiraeoideae- and Rubus-infecting strains (and among individual Rubus-infecting strains), the majority of which was attributed to variable genomic islands. Based on genomic distance scores and phylogenetic analysis, the Rubus-infecting strain ATCC BAA-2158 was genetically more closely related to the Spiraeoideae-infecting strains of E. amylovora than it was to the other Rubus-infecting strains. Analysis of the accessory genomes of Spiraeoideae- and Rubus-infecting strains has identified putative host-specific determinants including variation in the effector protein HopX1Ea and a putative secondary metabolite pathway only present in Rubus-infecting strains.
PMCID: PMC3567147  PMID: 23409014
5.  Genome Sequence of the Filamentous Bacterium Fibrisoma limi BUZ 3T 
Journal of Bacteriology  2012;194(16):4445.
Fibrisoma limi strain BUZ 3T, a Gram-negative bacterium, was isolated from coastal mud from the North Sea (Fedderwardersiel, Germany) and characterized using a polyphasic approach in 2011. The genome consists of a chromosome of about 7.5 Mb and three plasmids.
PMCID: PMC3416256  PMID: 22843583
6.  Genome Sequence of Fibrella aestuarina BUZ 2T, a Filamentous Marine Bacterium 
Journal of Bacteriology  2012;194(13):3555.
Fibrella aestuarina BUZ 2T is the type strain of the recently characterized genus Fibrella. Here we report the draft genome sequence of this strain, which consists of a single scaffold representing the chromosome (with 11 gaps) and a 161-kb circular plasmid.
PMCID: PMC3434725  PMID: 22689241
7.  Characterization of the Biosynthetic Operon for the Antibacterial Peptide Herbicolin in Pantoea vagans Biocontrol Strain C9-1 and Incidence in Pantoea Species 
Applied and Environmental Microbiology  2012;78(12):4412-4419.
Pantoea vagans C9-1 is a biocontrol strain that produces at least two antibiotics inhibiting the growth of Erwinia amylovora, the causal agent of fire blight disease of pear and apple. One antibiotic, herbicolin I, was purified from culture filtrates of P. vagans C9-1 and determined to be 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine, also known as Nß-epoxysuccinamoyl-DAP-valine. A plasposon library was screened for mutants that had lost the ability to produce herbicolin I. It was shown that mutants had reduced biocontrol efficacy in immature pear assays. The biosynthetic gene cluster in P. vagans C9-1 was identified by sequencing the flanking regions of the plasposon insertion sites. The herbicolin I biosynthetic gene cluster consists of 10 coding sequences (CDS) and is located on the 166-kb plasmid pPag2. Sequence comparisons identified orthologous gene clusters in Pantoea agglomerans CU0119 and Serratia proteamaculans 568. A low incidence of detection of the biosynthetic cluster in a collection of 45 Pantoea spp. from biocontrol, environmental, and clinical origins showed that this is a rare trait among the tested strains.
PMCID: PMC3370561  PMID: 22504810
8.  The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification 
BMC Genomics  2012;13:625.
Pantoea spp. are frequently isolated from a wide range of ecological niches and have various biological roles, as plant epi- or endophytes, biocontrol agents, plant-growth promoters or as pathogens of both plant and animal hosts. This suggests that members of this genus have undergone extensive genotypic diversification. One means by which this occurs among bacteria is through the acquisition and maintenance of plasmids. Here, we have analyzed and compared the sequences of a large plasmid common to all sequenced Pantoea spp.
Results and discussion
The Large PantoeaPlasmids (LPP-1) of twenty strains encompassing seven different Pantoea species, including pathogens and endo-/epiphytes of a wide range of plant hosts as well as insect-associated strains, were compared. The LPP-1 plasmid sequences range in size from ~281 to 794 kb and carry between 238 and 750 protein coding sequences (CDS). A core set of 46 proteins, encompassing 2.2% of the total pan-plasmid (2,095 CDS), conserved among all LPP-1 plasmid sequences, includes those required for thiamine and pigment biosynthesis. Phylogenetic analysis reveals that these plasmids have arisen from an ancestral plasmid, which has undergone extensive diversification. Analysis of the proteins encoded on LPP-1 also showed that these plasmids contribute to a wide range of Pantoea phenotypes, including the transport and catabolism of various substrates, inorganic ion assimilation, resistance to antibiotics and heavy metals, colonization and persistence in the host and environment, pathogenesis and antibiosis.
LPP-1 is universal to all Pantoea spp. whose genomes have been sequenced to date and is derived from an ancestral plasmid. LPP-1 encodes a large array of proteins that have played a major role in the adaptation of the different Pantoea spp. to their various ecological niches and their specialization as pathogens, biocontrol agents or benign saprophytes found in many diverse environments.
PMCID: PMC3505739  PMID: 23151240
9.  Complete Genome Sequence of Clinical Isolate Pantoea ananatis LMG 5342 
Journal of Bacteriology  2012;194(6):1615-1616.
The enterobacterium Pantoea ananatis is an ecologically versatile species. It has been found in the environment, as plant epiphyte and endophyte, as an emerging phytopathogen, and as a presumptive, opportunistic human pathogen. Here, we report the complete genome sequence of P. ananatis LMG 5342, isolated from a human wound.
PMCID: PMC3294857  PMID: 22374951
10.  Detection of AI-2 Receptors in Genomes of Enterobacteriaceae Suggests a Role of Type-2 Quorum Sensing in Closed Ecosystems 
Sensors (Basel, Switzerland)  2012;12(5):6645-6665.
The LuxS enzyme, an S-ribosyl-homocysteine lyase, catalyzes the production of the signal precursor for autoinducer-2 mediated quorum sensing (QS-2) in Vibrio. Its widespread occurrence among bacteria is often considered the evidence for a universal language for interspecies communication. Presence of the luxS gene and production of the autoinducer-2 (AI-2) signal have repeatedly been the only evidences presented to assign a functional QS-2 to the most diverse species. In fact, LuxS has a primary metabolic role as part of the activated methyl cycle. In this review we have analyzed the distribution of QS-2 related genes in Enterobacteriaceae by moving the focus of the investigation from AI-2 production to the detection of potential AI-2 receptors. The latter are common in pathogens or endosymbionts of animals, but were also found in a limited number of Enterobacteriaceae of the genera Enterobacter, Klebsiella, and Pantoea that live in close association with plants or fungi. Although a precise function of QS-2 in these species has not been identified, they all show an endophytic or endosymbiontic lifestyle that suggests a role of type-2 quorum sensing in the adaptation to closed ecosystems.
PMCID: PMC3386761  PMID: 22778662
LuxS; N-acyl homoserine lactone; Erwinia; Pantoea; Salmonella; Serratia; Enterobacter; metabolism; autoinducer; plant pathogen; nitrogen fixation
11.  Erwinia amylovora Novel Plasmid pEI70: Complete Sequence, Biogeography, and Role in Aggressiveness in the Fire Blight Phytopathogen 
PLoS ONE  2011;6(12):e28651.
Comparative genomics of several strains of Erwinia amylovora, a plant pathogenic bacterium causal agent of fire blight disease, revealed that its diversity is primarily attributable to the flexible genome comprised of plasmids. We recently identified and sequenced in full a novel 65.8 kb plasmid, called pEI70. Annotation revealed a lack of known virulence-related genes, but found evidence for a unique integrative conjugative element related to that of other plant and human pathogens. Comparative analyses using BLASTN showed that pEI70 is almost entirely included in plasmid pEB102 from E. billingiae, an epiphytic Erwinia of pome fruits, with sequence identities superior to 98%. A duplex PCR assay was developed to survey the prevalence of plasmid pEI70 and also that of pEA29, which had previously been described in several E. amylovora strains. Plasmid pEI70 was found widely dispersed across Europe with frequencies of 5–92%, but it was absent in E. amylovora analyzed populations from outside of Europe. Restriction analysis and hybridization demonstrated that this plasmid was identical in at least 13 strains. Curing E. amylovora strains of pEI70 reduced their aggressiveness on pear, and introducing pEI70 into low-aggressiveness strains lacking this plasmid increased symptoms development in this host. Discovery of this novel plasmid offers new insights into the biogeography, evolution and virulence determinants in E. amylovora.
PMCID: PMC3235134  PMID: 22174857
12.  Diversity, Evolution, and Functionality of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Regions in the Fire Blight Pathogen Erwinia amylovora▿† 
Applied and Environmental Microbiology  2011;77(11):3819-3829.
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas system confers acquired heritable immunity against mobile nucleic acid elements in prokaryotes, limiting phage infection and horizontal gene transfer of plasmids. In CRISPR arrays, characteristic repeats are interspersed with similarly sized nonrepetitive spacers derived from transmissible genetic elements and acquired when the cell is challenged with foreign DNA. New spacers are added sequentially and the number and type of CRISPR units can differ among strains, providing a record of phage/plasmid exposure within a species and giving a valuable typing tool. The aim of this work was to investigate CRISPR diversity in the highly homogeneous species Erwinia amylovora, the causal agent of fire blight. A total of 18 CRISPR genotypes were defined within a collection of 37 cosmopolitan strains. Strains from Spiraeoideae plants clustered in three major groups: groups II and III were composed exclusively of bacteria originating from the United States, whereas group I generally contained strains of more recent dissemination obtained in Europe, New Zealand, and the Middle East. Strains from Rosoideae and Indian hawthorn (Rhaphiolepis indica) clustered separately and displayed a higher intrinsic diversity than that of isolates from Spiraeoideae plants. Reciprocal exclusion was generally observed between plasmid content and cognate spacer sequences, supporting the role of the CRISPR/Cas system in protecting against foreign DNA elements. However, in several group III strains, retention of plasmid pEU30 is inconsistent with a functional CRISPR/Cas system.
PMCID: PMC3127596  PMID: 21460108
13.  Genome of a European Fresh-Vegetable Food Safety Outbreak Strain of Salmonella enterica subsp. enterica Serovar Weltevreden▿ 
Journal of Bacteriology  2011;193(8):2066.
The genome of Salmonella enterica subsp. enterica serovar Weltevreden strain 2007-60-3289-1 was sequenced. The genome sequence of this fresh-vegetable isolate from Scandinavia will be useful for the elucidation of plant host factors in comparison to other serovars of S. enterica subsp. enterica.
PMCID: PMC3133026  PMID: 21296964
14.  Genome Sequence of an Erwinia amylovora Strain with Pathogenicity Restricted to Rubus Plants ▿  
Journal of Bacteriology  2010;193(3):785-786.
Here, we present the genome of a strain of Erwinia amylovora, the fire blight pathogen, with pathogenicity restricted to Rubus spp. Comparative genomics of ATCC BAA-2158 with E. amylovora strains from non-Rubus hosts identified significant genetic differences but support the inclusion of this strain within the species E. amylovora.
PMCID: PMC3021219  PMID: 21131493
15.  Metabolic Versatility and Antibacterial Metabolite Biosynthesis Are Distinguishing Genomic Features of the Fire Blight Antagonist Pantoea vagans C9-1 
PLoS ONE  2011;6(7):e22247.
Pantoea vagans is a commercialized biological control agent used against the pome fruit bacterial disease fire blight, caused by Erwinia amylovora. Compared to other biocontrol agents, relatively little is currently known regarding Pantoea genetics. Better understanding of antagonist mechanisms of action and ecological fitness is critical to improving efficacy.
Principal Findings
Genome analysis indicated two major factors contribute to biocontrol activity: competition for limiting substrates and antibacterial metabolite production. Pathways for utilization of a broad diversity of sugars and acquisition of iron were identified. Metabolism of sorbitol by P. vagans C9-1 may be a major metabolic feature in biocontrol of fire blight. Biosynthetic genes for the antibacterial peptide pantocin A were found on a chromosomal 28-kb genomic island, and for dapdiamide E on the plasmid pPag2. There was no evidence of potential virulence factors that could enable an animal or phytopathogenic lifestyle and no indication of any genetic-based biosafety risk in the antagonist.
Identifying key determinants contributing to disease suppression allows the development of procedures to follow their expression in planta and the genome sequence contributes to rationale risk assessment regarding the use of the biocontrol strain in agricultural systems.
PMCID: PMC3137637  PMID: 21789243
16.  Genome Sequence of the Biocontrol Agent Pantoea vagans Strain C9-1 ▿  
Journal of Bacteriology  2010;192(24):6486-6487.
Pantoea vagans is a Gram-negative enterobacterial plant epiphyte of a broad range of plants. Here we report the 4.89-Mb genome sequence of P. vagans strain C9-1 (formerly Pantoea agglomerans), which is commercially registered for biological control of fire blight, a disease of pear and apple trees caused by Erwinia amylovora.
PMCID: PMC3008540  PMID: 20952567
17.  Gene Clusters Involved in Isethionate Degradation by Terrestrial and Marine Bacteria▿ §  
Ubiquitous isethionate (2-hydroxyethanesulfonate) is dissimilated by diverse bacteria. Growth of Cupriavidus necator H16 with isethionate was observed, as was inducible membrane-bound isethionate dehydrogenase (IseJ) and inducible transcription of the genes predicted to encode IseJ and a transporter (IseU). Biodiversity in isethionate transport genes was observed and investigated by transcription experiments.
PMCID: PMC2805217  PMID: 19933343
18.  Bifurcated Degradative Pathway of 3-Sulfolactate in Roseovarius nubinhibens ISM via Sulfoacetaldehyde Acetyltransferase and (S)-Cysteate Sulfolyase ▿ †  
Journal of Bacteriology  2009;191(18):5648-5656.
Data from the genome sequence of the aerobic, marine bacterium Roseovarius nubinhibens ISM were interpreted such that 3-sulfolactate would be degraded as a sole source of carbon and energy for growth via a novel bifurcated pathway including two known desulfonative enzymes, sulfoacetaldehyde acetyltransferase (EC (Xsc) and cysteate sulfo-lyase (EC (CuyA). Strain ISM utilized sulfolactate quantitatively with stoichiometric excretion of the sulfonate sulfur as sulfate. A combination of enzyme assays, analytical chemistry, enzyme purification, peptide mass fingerprinting, and reverse transcription-PCR data supported the presence of an inducible, tripartite sulfolactate uptake system (SlcHFG), and a membrane-bound sulfolactate dehydrogenase (SlcD) which generated 3-sulfopyruvate, the point of bifurcation. 3-Sulfopyruvate was in part decarboxylated by 3-sulfopyruvate decarboxylase (EC (ComDE), which was purified. The sulfoacetaldehyde that was formed was desulfonated by Xsc, which was identified, and the acetyl phosphate was converted to acetyl-coenzyme A by phosphate acetyltransferase (Pta). The other portion of the 3-sulfopyruvate was transaminated to (S)-cysteate, which was desulfonated by CuyA, which was identified. The sulfite that was formed was presumably exported by CuyZ (TC 9.B.7.1.1 in the transport classification system), and a periplasmic sulfite dehydrogenase is presumed. Bioinformatic analyses indicated that transporter SlcHFG is rare but that SlcD is involved in three different combinations of pathways, the bifurcated pathway shown here, via CuyA alone, and via Xsc alone. This novel pathway involves ComDE in biodegradation, whereas it was discovered in the biosynthesis of coenzyme M. The different pathways of desulfonation of sulfolactate presumably represent final steps in the biodegradation of sulfoquinovose (and exudates derived from it) in marine and aquatic environments.
PMCID: PMC2737982  PMID: 19581363
19.  Identification of an Amino Acid Position That Determines the Substrate Range of Integral Membrane Alkane Hydroxylases 
Journal of Bacteriology  2005;187(1):85-91.
Selection experiments and protein engineering were used to identify an amino acid position in integral membrane alkane hydroxylases (AHs) that determines whether long-chain-length alkanes can be hydroxylated by these enzymes. First, substrate range mutants of the Pseudomonas putida GPo1 and Alcanivorax borkumensis AP1 medium-chain-length AHs were obtained by selection experiments with a specially constructed host. In all mutants able to oxidize alkanes longer than C13, W55 (in the case of P. putida AlkB) or W58 (in the case of A. borkumensis AlkB1) had changed to a much less bulky amino acid, usually serine or cysteine. The corresponding position in AHs from other bacteria that oxidize alkanes longer than C13 is occupied by a less bulky hydrophobic residue (A, V, L, or I). Site-directed mutagenesis of this position in the Mycobacterium tuberculosis H37Rv AH, which oxidizes C10 to C16 alkanes, to introduce more bulky amino acids changed the substrate range in the opposite direction; L69F and L69W mutants oxidized only C10 and C11 alkanes. Subsequent selection for growth on longer alkanes restored the leucine codon. A structure model of AHs based on these results is discussed.
PMCID: PMC538836  PMID: 15601691
20.  Functional Analysis of Alkane Hydroxylases from Gram-Negative and Gram-Positive Bacteria 
Journal of Bacteriology  2002;184(6):1733-1742.
We have cloned homologs of the Pseudomonas putida GPo1 alkane hydroxylase from Pseudomonas aeruginosa PAO1, Pseudomonas fluorescens CHA0, Alcanivorax borkumensis AP1, Mycobacterium tuberculosis H37Rv, and Prauserella rugosa NRRL B-2295. Sequence comparisons show that the level of protein sequence identity between the homologs is as low as 35%, and that the Pseudomonas alkane hydroxylases are as distantly related to each other as to the remaining alkane hydroxylases. Based on the observation that rubredoxin, an electron transfer component of the GPo1 alkane hydroxylase system, can be replaced by rubredoxins from other alkane hydroxylase systems, we have developed three recombinant host strains for the functional analysis of the novel alkane hydroxylase genes. Two hosts, Escherichia coli GEc137 and P. putida GPo12, were equipped with pGEc47ΔB, which encodes all proteins necessary for growth on medium-chain-length alkanes (C6 to C12), except a functional alkane hydroxylase. The third host was an alkB knockout derivative of P. fluorescens CHA0, which is no longer able to grow on C12 to C16 alkanes. All alkane hydroxylase homologs, except the Acinetobacter sp. ADP1 AlkM, allowed at least one of the three hosts to grow on n-alkanes.
PMCID: PMC134907  PMID: 11872725
21.  Rubredoxins Involved in Alkane Oxidation 
Journal of Bacteriology  2002;184(6):1722-1732.
Rubredoxins (Rds) are essential electron transfer components of bacterial membrane-bound alkane hydroxylase systems. Several Rd genes associated with alkane hydroxylase or Rd reductase genes were cloned from gram-positive and gram-negative organisms able to grow on n-alkanes (Alk-Rds). Complementation tests in an Escherichia coli recombinant containing all Pseudomonas putida GPo1 genes necessary for growth on alkanes except Rd 2 (AlkG) and sequence comparisons showed that the Alk-Rds can be divided in AlkG1- and AlkG2-type Rds. All alkane-degrading strains contain AlkG2-type Rds, which are able to replace the GPo1 Rd 2 in n-octane hydroxylation. Most strains also contain AlkG1-type Rds, which do not complement the deletion mutant but are highly conserved among gram-positive and gram-negative bacteria. Common to most Rds are the two iron-binding CXXCG motifs. All Alk-Rds possess four negatively charged residues that are not conserved in other Rds. The AlkG1-type Rds can be distinguished from the AlkG2-type Rds by the insertion of an arginine downstream of the second CXXCG motif. In addition, the glycines in the two CXXCG motifs are usually replaced by other amino acids. Mutagenesis of residues conserved in either the AlkG1- or the AlkG2-type Rds, but not between both types, shows that AlkG1 is unable to transfer electrons to the alkane hydroxylase mainly due to the insertion of the arginine, whereas the exchange of the glycines in the two CXXCG motifs only has a limited effect.
PMCID: PMC134906  PMID: 11872724
22.  The Alkane Hydroxylase Gene of Burkholderia cepacia RR10 Is under Catabolite Repression Control 
Journal of Bacteriology  2001;183(14):4202-4209.
In many microorganisms the first step for alkane degradation is the terminal oxidation of the molecule by an alkane hydroxylase. We report the characterization of a gene coding for an alkane hydroxylase in a Burkholderia cepacia strain isolated from an oil-contaminated site. The protein encoded showed similarity to other known or predicted bacterial alkane hydroxylases, although it clustered on a separate branch together with the predicted alkane hydroxylase of a Mycobacterium tuberculosis strain. Introduction of the cloned B. cepacia gene into an alkane hydroxylase knockout mutant of Pseudomonas fluorescens CHAO restored its ability to grow on alkanes, which confirms that the gene analyzed encodes a functional alkane hydroxylase. The gene, which was named alkB, is not linked to other genes of the alkane oxidation pathway. Its promoter was identified, and its expression was analyzed under different growth conditions. Transcription was induced by alkanes of chain lengths containing 12 to at least 30 carbon atoms as well as by alkanols. Although the gene was efficiently expressed during exponential growth, transcription increased about fivefold when cells approached stationary phase, a characteristic not shared by the few alkane degraders whose regulation has been studied. Expression of the alkB gene was under carbon catabolite repression when cells were cultured in the presence of several organic acids and sugars or in a complex (rich) medium. The catabolic repression process showed several characteristics that are clearly different from what has been observed in other alkane degradation pathways.
PMCID: PMC95309  PMID: 11418560

Results 1-22 (22)