PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("simman, B")
1.  S100A4 is expressed at site of invasion in rheumatoid arthritis synovium and modulates production of matrix metalloproteinases 
Annals of the Rheumatic Diseases  2006;65(12):1645-1648.
The metastasis‐associated protein S100A4 promotes the progression of cancer by regulating the remodelling of the extracellular matrix. The expression of S100A4 in vivo is shown and the functional role of S100A4 in the pathogenesis of osteoarthritis and rheumatoid arthritisis is explored. The expression of S100A4 in rheumatoid arthritis, osteoarthritis and normal synovial tissues was determined by immunohistochemistry. The expression of matrix metalloproteinase (MMP) mRNA was measured in rheumatoid arthritis and osteoarthritis synovial fibroblasts treated and untreated with S100A4 oligomer by real‐time polymerase chain reaction. Levels of released MMPs were confirmed by ELISA in cell culture supernatants. S100A4 protein was expressed in rheumatoid arthritis and osteoarthritis synovial tissues, in contrast with normal synovium. S100A4 up regulated MMP‐3 mRNA in rheumatoid arthritis synovial fluid, with a peak after 6 h. This resulted in release of MMP‐3 protein. MMP‐1, MMP‐9 and MMP‐13 mRNA were also up regulated in synovial fluid, but with different kinetics. MMP‐14 mRNA showed no change. Thus, S100A4 protein is expressed in synovial tissues of patients with rheumatoid arthritis and osteoarthritis in contrast with healthy people. It induces the expression and release of MMP‐3 and other MMPs from synovial fluid. The data suggest that S100A4‐producing cells could be involved in the pathogenesis of osteoarthritis and rheumatoid arthritis, including pannus formation and joint destruction.
doi:10.1136/ard.2005.047704
PMCID: PMC1798462  PMID: 17105852
2.  Trichostatin A sensitises rheumatoid arthritis synovial fibroblasts for TRAIL‐induced apoptosis 
Annals of the Rheumatic Diseases  2005;65(7):910-912.
Background
Histone acetylation/deacetylation has a critical role in the regulation of transcription by altering the chromatin structure.
Objective
To analyse the effect of trichostatin A (TSA), a streptomyces metabolite which specifically inhibits mammalian histone deacetylases, on TRAIL‐induced apoptosis of rheumatoid arthritis synovial fibroblasts (RASF).
Methods
Apoptotic cells were detected after co‐treatment of RASF with TRAIL (200 ng/ml) and TSA (0.5, 1, and 2 μmol/l) by flow cytometry using propidium iodide/annexin‐V‐FITC staining. Cell proliferation was assessed using the MTS proliferation test. Induction of the cell cycle inhibitor p21Waf/Cip1 by TSA was analysed by western blot. Expression of the TRAIL receptor‐2 (DR5) on the cell surface of RASF was analysed by flow cytometry. Levels of soluble TRAIL were measured in synovial fluid of patients with RA and osteoarthritis (OA) by ELISA.
Results
Co‐treatment of the cells with TSA and TRAIL induced cell death in a synergistic and dose dependent manner, whereas TRAIL and TSA alone had no effect or only a modest effect. RASF express DR5 (TRAIL receptor 2), but treatment of the cells with TSA for 24 hours did not change the expression level of DR5, as it is shown for cancer cells. TSA induced cell cycle arrest in RASF through up regulation of p21Waf1/Cip1. Levels of soluble TRAIL were significantly higher in RA than in OA synovial fluids.
Conclusion
Because TSA sensitises RASF for TRAIL‐induced apoptosis, it is concluded that TSA discloses sensitive sites in the cascade of TRAIL signalling and may represent a new principle for the treatment of RA.
doi:10.1136/ard.2005.044065
PMCID: PMC1798225  PMID: 16284094
trichostatin A; TRAIL; apoptosis; synovial fibroblasts; rheumatoid arthritis
3.  Discrepancy between mRNA and protein expression of tumour suppressor maspin in synovial tissue may contribute to synovial hyperplasia in rheumatoid arthritis 
Annals of the Rheumatic Diseases  2004;63(10):1205-1211.
Objective: To investigate the expression of maspin in RA synovial tissue and compare it with the expression in osteoarthritis (OA) and normal synovial tissue (NS).
Methods: Using specific primers for maspin, a 237 bp fragment was amplified from cDNA obtained from cultured RA, OA, and normal synovial fibroblasts (SF) by RT-PCR. Additionally, mRNA expression levels were determined quantitatively by real time PCR. mRNA expression of maspin was investigated on snap frozen and paraffin embedded synovial tissue sections by in situ hybridisation. Immunohistochemistry was used to identify the cell type expressing maspin. SDS-PAGE and western blotting were performed to evaluate the protein expression in cultured SF. To confirm protein synthesis in situ, immunohistochemistry with specific anti-maspin antibodies was performed in synovial tissue sections of patients with RA.
Results: RT-PCR showed expression of maspin in all cDNA samples from cultured SF. Maspin mRNA was found to be decreased in RA SF twofold and 70-fold compared with OA SF and NS SF, respectively. Maspin mRNA was expressed in RA, OA, and normal synovial tissue. Importantly, maspin transcripts were also found at sites of invasion into cartilage and bone. At the protein level, maspin could be detected in RA and, less prominently, OA SF. In RA synovial tissue, maspin protein was detected in only a few synovial lining cells.
Conclusion: Maspin is expressed intensively in RA SF at the mRNA level, but only slightly at the protein level, possibly owing to down regulation of maspin; this may contribute to the hyperplasia of synovial tissue in RA.
doi:10.1136/ard.2003.006312
PMCID: PMC1754744  PMID: 15361372
5.  Fruits, foliage and the evolution of primate colour vision. 
Primates are apparently unique amongst the mammals in possessing trichromatic colour vision. However, not all primates are trichromatic. Amongst the haplorhine (higher) primates, the catarrhines possess uniformly trichromatic colour vision, whereas most of the platyrrhine species exhibit polymorphic colour vision, with a variety of dichromatic and trichromatic phenotypes within the population. It has been suggested that trichromacy in primates and the reflectance functions of certain tropical fruits are aspects of a coevolved seed-dispersal system: primate colour vision has been shaped by the need to find coloured fruits amongst foliage, and the fruits themselves have evolved to be salient to primates and so secure dissemination of their seeds. We review the evidence for and against this hypothesis and we report an empirical test: we show that the spectral positioning of the cone pigments found in trichromatic South American primates is well matched to the task of detecting fruits against a background of leaves. We further report that particular trichromatic platyrrhine phenotypes may be better suited than others to foraging for particular fruits under particular conditions of illumination; and we discuss possible explanations for the maintenance of polymorphic colour vision amongst the platyrrhines.
doi:10.1098/rstb.2000.0773
PMCID: PMC1088428  PMID: 11316480

Results 1-5 (5)