PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Follow-up of folinic acid supplementation for patients with cerebral folate deficiency and Kearns-Sayre syndrome 
Background
Kearns-Sayre syndrome (KSS) is a mitochondrial DNA deletion syndrome that presents with profound cerebral folate deficiency and other features. Preliminary data support the notion that folinic acid therapy might be useful in the treatment of KSS patients. Our aim was to assess the clinical and neuroimaging outcomes of KSS patients receiving folinic acid therapy.
Methods
Patients: We recruited eight patients with diagnoses of KSS. Four cases were treated at 12 de Octubre Hospital, and the other two cases were treated at Sant Joan de Déu Hospital. Two patients refused to participate in the treatment protocol.
Methods: Clinical, biochemical and neuroimaging data (magnetic resonance imaging or computed tomography scan) were collected in baseline conditions and at different time points after the initiation of therapy. Cerebrospinal fluid 5-methyltetrahydrofolate levels were analysed with HPLC and fluorescence detection. Large-scale mitochondrial DNA deletions were analysed by Southern blot.
Treatment protocol: The follow-up periods ranged from one to eight years. Cases 1–4 received oral folinic acid at a dose of 1 mg/kg/day, and cases 6 and 8 received 3 mg/kg/day.
Results
No adverse effects of folinic acid treatment were observed. Cerebral 5-methyltetrahydrofolate deficiencies were observed in all cases in the baseline conditions. Moreover, all three patients who accepted lumbar puncture after folinic acid therapy exhibited complete recoveries of their decreased basal cerebrospinal fluid 5-methyltetrahydrofolate levels to normal values. Two cases neurologically improved after folinic therapy. Disease worsened in the other patients.
Post-treatment neuroimaging was performed for the 6 cases that received folinic acid therapy. One patient exhibited improvements in white matter abnormalities. The remaining patients displayed progressions in subcortical cerebral white matter, the cerebellum and cerebral atrophy.
Conclusions
Four patients exhibited clinical and radiological progression of the disease following folinic acid treatment. Only one patient who was treated in an early stage of the disease exhibited both neurological and radiological improvements following elevated doses of folinic acid, and an additional patient experienced neurological improvement. Early treatment with high-dose folinic acid therapy seems to be advisable for the treatment of KSS.
Trial registration
EudracT2007-00-6748-23
Electronic supplementary material
The online version of this article (doi:10.1186/s13023-014-0217-2) contains supplementary material, which is available to authorized users.
doi:10.1186/s13023-014-0217-2
PMCID: PMC4302586  PMID: 25539952
Kearns-Sayre syndrome; Mitochondrial DNA deletion; Cerebral folate deficiency; Folinic acid treatment; Neuroimaging
2.  Urea cycle disorders in Spain: an observational, cross-sectional and multicentric study of 104 cases 
Background
Advances in the diagnosis and treatment of urea cycle disorders (UCDs) have led to a higher survival rate. The purpose of this study is to describe the characteristics of patients with urea cycle disorders in Spain.
Methods
Observational, cross-sectional and multicenter study. Clinical, biochemical and genetic data were collected from patients with UCDs, treated in the metabolic diseases centers in Spain between February 2012 and February 2013, covering the entire Spanish population. Heterozygous mothers of patients with OTC deficiency were only included if they were on treatment due to being symptomatic or having biochemistry abnormalities.
Results
104 patients from 98 families were included. Ornithine transcarbamylase deficiency was the most frequent condition (64.4%) (61.2% female) followed by type 1 citrullinemia (21.1%) and argininosuccinic aciduria (9.6%). Only 13 patients (12.5%) were diagnosed in a pre-symptomatic state. 63% of the cases presented with type intoxication encephalopathy. The median ammonia level at onset was 298 μmol/L (169-615). The genotype of 75 patients is known, with 18 new mutations having been described. During the data collection period four patients died, three of them in the early days of life. The median current age is 9.96 years (5.29-18), with 25 patients over 18 years of age. Anthropometric data, expressed as median and z-score for the Spanish population is shown. 52.5% of the cases present neurological sequelae, which have been linked to the type of disease, neonatal onset, hepatic failure at diagnosis and ammonia values at diagnosis. 93 patients are following a protein restrictive diet, 0.84 g/kg/day (0.67-1.10), 50 are receiving essential amino acid supplements, 0.25 g/kg/day (0.20-0.45), 58 arginine, 156 mg/kg/day (109-305) and 45 citrulline, 150 mg/kg/day (105-199). 65 patients are being treated with drugs: 4 with sodium benzoate, 50 with sodium phenylbutyrate, 10 with both drugs and 1 with carglumic acid.
Conclusions
Studies like this make it possible to analyze the frequency, natural history and clinical practices in the area of rare diseases, with the purpose of knowing the needs of the patients and thus planning their care.
doi:10.1186/s13023-014-0187-4
PMCID: PMC4258263  PMID: 25433810
Urea cycle disorders; UCDs; N-acetylglutamate synthase; Carbamoylphosphate synthetase 1; Ornithine transcarbamylase; Argininosuccinate synthetase; Citrullinemia type 1; Argininosuccinate lyase; Argininosuccinic aciduria; Arginase 1
3.  Expression of transcription factor grainyhead-like 2 is diminished in cervical cancer 
The transcription factor grainyhead-like 2 (GRHL2) is evolutionarily conserved in many different species, and is involved in morphogenesis, epithelial differentiation, and the control of the epithelial-mesenchymal transition. It has also recently been implicated in carcinogenesis, but its role in this remains controversial. Expression of GRHL2 has not previously been reported in cervical cancer, so the present study aimed to characterize GRHL2 expression in cervical cancer-derived cell lines (CCCLs) and cervical tissues with different grades of lesions. Microarray analysis found that the expression of 58 genes was down-regulated in CCCLs compared to HaCaT cells (non-tumorigenic human epithelial cell line). The expression of eight of these genes was validated by quantitative real-time PCR (qPCR), and GRHL2 was found to be the most down-regulated. Western blot assays corroborated that GRHL2 protein levels were strongly down-regulated in CCCLs. Cervical cells from women without cervical lesions were shown to express GRHL2, while immunohistochemistry found that positivity to GRHL2 decreased in cervical cancer tissues. In conclusion, a loss or strong reduction in GRHL2 expression appears to be a characteristic of cervical cancer, suggesting that GRHL2 down-regulation is a necessary step during cervical carcinogenesis. However, further studies are needed to delineate the role of GRHL2 in cervical cancer and during malignant progression.
PMCID: PMC4270610  PMID: 25550776
GRHL2; grainyhead-like 2; cervical cancer; epithelial-mesenchymal transition; carcinogenesis
4.  Electrochemical Quantification of the Antioxidant Capacity of Medicinal Plants Using Biosensors 
Sensors (Basel, Switzerland)  2014;14(8):14423-14439.
The working area of a screen-printed electrode, SPE, was modified with the enzyme tyrosinase (Tyr) using different immobilization methods, namely entrapment with water-soluble polyvinyl alcohol (PVA), cross-linking using glutaraldehyde (GA), and cross-linking using GA and human serum albumin (HSA); the resulting electrodes were termed SPE/Tyr/PVA, SPE/Tyr/GA and SPE/Tyr/HSA/GA, respectively. These biosensors were characterized by means of amperometry and EIS techniques. From amperometric evaluations, the apparent Michaelis-Menten constant, Km′, of each biosensor was evaluated while the respective charge transfer resistance, Rct, was assessed from impedance measurements. It was found that the SPE/Tyr/GA had the smallest Km′ (57 ± 7) μM and Rct values. This electrode also displayed both the lowest detection and quantification limits for catechol quantification. Using the SPE/Tyr/GA, the Trolox Equivalent Antioxidant Capacity (TEAC) was determined from infusions prepared with “mirto” (Salvia microphylla), “hHierba dulce” (Lippia dulcis) and “salve real” (Lippia alba), medicinal plants commonly used in Mexico.
doi:10.3390/s140814423
PMCID: PMC4179004  PMID: 25111237
medicinal plants; antioxidant capacity; biosensors; tyrosinase; immobilization; screen-printed electrodes; Michaelis-Menten constant
5.  A new mutation in the gene encoding mitochondrial seryl-tRNA synthetase as a cause of HUPRA syndrome 
BMC Nephrology  2013;14:195.
Background
HUPRA syndrome is a rare mitochondrial disease characterized by hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis. This syndrome was previously described in three patients with a homozygous mutation c.1169A > G (p.D390G) in SARS2, encoding the mitochondrial seryl-tRNA synthetase.
Case presentation
Here we report the clinical and genetic findings in a girl and her brother. Both patients were clinically diagnosed with the HUPRA syndrome. Analysis of the pedigree identified a new homozygous mutation c.1205G > A (p.R402H) in SARS2 gene. This mutation is very rare in the population and it is located at the C-terminal globular domain of the homodimeric enzyme very close to p.D390G.
Conclusion
Several data support that p.R402H mutation in SARS2 is a new cause of HUPRA syndrome.
doi:10.1186/1471-2369-14-195
PMCID: PMC3847196  PMID: 24034276
Mitochondrial DNA; Mitochondrial disease; HUPRA syndrome; SARS2; Mitochondrial respiratory chain
6.  Genomic and Functional Analyses of the Gentisate and Protocatechuate Ring-Cleavage Pathways and Related 3-Hydroxybenzoate and 4-Hydroxybenzoate Peripheral Pathways in Burkholderia xenovorans LB400 
PLoS ONE  2013;8(2):e56038.
In this study, the gentisate and protocatechuate pathways in Burkholderia xenovorans LB400 were analyzed by genomic and functional approaches, and their role in 3-hydroxybenzoate (3-HBA) and 4-hydroxybenzoate (4-HBA) degradation was proposed. The LB400 genome possesses two identical mhbRTDHI gene clusters encoding the gentisate pathway and one mhbM gene encoding a 3-HBA 6-hydroxylase that converts 3-HBA into gentisate. The pca genes encoding the protocatechuate pathway and the pobA gene encoding the 4-HBA 3-monooxygenase that oxidizes 4-HBA into protocatechuate are arranged in gene clusters and single genes mainly at the minor chromosome, but also at the major chromosome and the megaplasmid. Strain LB400 was able to grow on gentisate, protocatechuate, 3-HBA and 4-HBA. Transcriptional analyses showed that the mhbD gene encoding the gentisate 1,2-dioxygenase was expressed during growth on 3-HBA, 4-HBA and gentisate, whereas the pcaG gene encoding the protocatechuate 3,4-dioxygenase was expressed only during growth on 4-HBA and protocatechuate. The mhbM gene encoding the 3-HBA 6-hydroxylase was transcribed in strain LB400 during growth on HBAs, gentisate, protocatechuate and glucose. The pobA gene encoding the 4-HBA 3-monooxygenase was expressed during growth on HBAs and glucose. 3-HBA- and 4-HBA-grown LB400 cells showed gentisate 1,2-dioxygenase activity, whereas protocatechuate 3,4-dioxygenase activity was observed only in 4-HBA-grown cells. The mhbR gene encoding a MarR-type transcriptional regulator that probably regulates the expression of the MhbT transporter, and the pcaQ and pcaR genes encoding LysR-type transcriptional regulators that regulate pcaHG and pcaIJBDC genes, respectively, were transcribed during growth on both HBAs, gentisate, protocatechuate and glucose, suggesting a basal constitutive expression. The results indicate active gentisate, protocatechuate, 3-HBA and 4-HBA catabolic pathways in B. xenovorans LB400 and suggest that 3-HBA is channeled exclusively through the gentisate route, whereas 4-HBA is funneled into the protocatechuate central pathway and potentially into the gentisate pathway.
doi:10.1371/journal.pone.0056038
PMCID: PMC3572157  PMID: 23418504
7.  Auditory Cortex Basal Activity Modulates Cochlear Responses in Chinchillas 
PLoS ONE  2012;7(4):e36203.
Background
The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system.
Methodology/Principal Findings
Cochlear microphonics (CM), auditory-nerve compound action potentials (CAP) and auditory cortex evoked potentials (ACEP) were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments) and a permanent reduction in five chinchillas (lesion experiments). We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACEP amplitudes were completely recovered after ninety minutes in deactivation experiments, only partial recovery was observed in the magnitudes of cochlear responses.
Conclusions/Significance
These results show that blocking ongoing auditory cortex activity modulates CM and CAP responses, demonstrating that cortico-olivocochlear circuits regulate auditory nerve and cochlear responses through a basal efferent tone. The diversity of the obtained effects suggests that there are at least two functional pathways from the auditory cortex to the cochlea.
doi:10.1371/journal.pone.0036203
PMCID: PMC3340362  PMID: 22558383

Results 1-7 (7)