PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (107)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  Global and gene-specific DNA methylation pattern discriminates cholecystitis from gallbladder cancer patients in Chile 
Future oncology (London, England)  2014;11(2):233-249.
Aim
The aim of the study was to evaluate the use of global and gene-specific DNA methylation changes as potential biomarkers for gallbladder cancer (GBC) in a cohort from Chile.
Material & methods
DNA methylation was analyzed through an ELISA-based technique and quantitative methylation-specific PCR.
Results
Global DNA Methylation Index (p = 0.02) and promoter methylation of SSBP2 (p = 0.01) and ESR1 (p = 0.05) were significantly different in GBC when compared with cholecystitis. Receiver curve operator analysis revealed promoter methylation of APC, CDKN2A, ESR1, PGP9.5 and SSBP2, together with the Global DNA Methylation Index, had 71% sensitivity, 95% specificity, a 0.97 area under the curve and a positive predictive value of 90%.
Conclusion
Global and gene-specific DNA methylation may be useful biomarkers for GBC clinical assessment.
doi:10.2217/fon.14.165
PMCID: PMC4332836  PMID: 25066711
gallbladder cancer; global and gene-specific DNA methylation; molecular biomarkers panel; tumor suppressor genes
2.  Activation of the NOTCH pathway in Head and Neck Cancer 
Cancer research  2013;74(4):1091-1104.
NOTCH1 mutations have been reported to occur in 10 to 15% of head and neck squamous cell carcinomas (HNSCC). To determine the significance of these mutations, we embarked upon a comprehensive study of NOTCH signaling in a cohort of 44 HNSCC tumors and 25 normal mucosal samples through a set of expression, copy number, methylation and mutation analyses. Copy number increases were identified in NOTCH pathway genes including the NOTCH ligand JAG1. Gene set analysis defined a differential expression of the NOTCH signaling pathway in HNSCC relative to normal tissues. Analysis of individual pathway-related genes revealed overexpression of ligands JAG1 and JAG2 and receptor NOTCH3. In 32% of the HNSCC examined, activation of the downstream NOTCH effectors HES1/HEY1 was documented. Notably, exomic sequencing identified 5 novel inactivating NOTCH1 mutations in 4/37 of the tumors analyzed, with none of these tumors exhibiting HES1/HEY1 overexpression. Our results revealed a bimodal pattern of NOTCH pathway alterations in HNSCC, with a smaller subset exhibiting inactivating NOTCH1 receptors mutations but a larger subset exhibiting other NOTCH1 pathway alterations, including increases in expression or gene copy number of the receptor or ligands as well as downstream pathway activation. Our results imply that therapies that target the NOTCH pathway may be more widely suitable for HNSCC treatment than appreciated currently.
doi:10.1158/0008-5472.CAN-13-1259
PMCID: PMC3944644  PMID: 24351288
3.  Clusterin is a Gene Specific Target of MicroRNA-21 in Head and Neck Squamous Cell Carcinoma 
Purpose:
MicroRNA-21 (miRNA-21) has proto-oncogenic properties, though no miRNA-21 specific targets have been found in head and neck squamous cell carcinoma (HNSCC). Further study of miRNA-21 and its specific targets is essential to understanding HNSCC biology.
Experimental Design:
miRNA expression profiles of 10 HNSCC and 10 normal mucosa samples were investigated using a custom miRNA microarray. 13 HNSCC and 5 normal mucosa primary tissue specimens underwent mRNA expression microarray analysis. To identify miRNA-21 downstream targets, oral keratinocyte cells were subjected to microarray analysis after miRNA-21 transient transfection. miRNA and mRNA expression were validated by RT-qPCR in a separate cohort of 16 HNSCC and 15 normal mucosal samples. Microarray and bioinformatics analyses were integrated to identify potential gene targets. In vitro assays looked at the function and interaction of miRNA-21 and its specific gene targets.
Results:
miRNA-21 was upregulated in HNSCC and stimulated cell growth. Integrated analyses identified Clusterin (CLU) as a potential miRNA-21 gene target. CLU was downregulated after forced expression of miRNA-21 in normal and HNSCC cell lines. The activity of a luciferase construct containing the 3’UTR of CLU was repressed by the ectopic expression of miRNA-21. CLU was also downregulated in primary HNSCC and correlated with miRNA-21 over-expression. CLU variant 1 (CLU-1) was the predominant splice variant in HNSCC, and showed growth suppression function that was reversed by miRNA-21 over-expression.
Conclusions:
CLU is a specific, functional target of oncogenic miRNA-21 in HNSCC. CLU-1 isoform is the predominant growth suppressive variant targeted by miRNA-21.
doi:10.1158/1078-0432.CCR-13-2675
PMCID: PMC3970211  PMID: 24327270
Clusterin; microRNA-21; gene target; tumor-suppressor gene; head and neck cancer
4.  Integrated Next-Generation Sequencing and Avatar Mouse Models for Personalized Cancer Treatment 
Background
Current technology permits an unbiased massive analysis of somatic genetic alterations from tumor DNA as well as the generation of individualized mouse xenografts (Avatar models). This work aimed to evaluate our experience integrating these two strategies to personalize the treatment of patients with cancer.
Methods
We performed whole-exome sequencing analysis of 25 patients with advanced solid tumors to identify putatively actionable tumor-specific genomic alterations. Avatar models were used as an in vivo platform to test proposed treatment strategies.
Results
Successful exome sequencing analyses have been obtained for 23 patients. Tumor-specific mutations and copy-number variations were identified. All samples profiled contained relevant genomic alterations. Tumor was implanted to create an Avatar model from 14 patients and 10 succeeded. Occasionally, actionable alterations such as mutations in NF1, PI3KA, and DDR2 failed to provide any benefit when a targeted drug was tested in the Avatar and, accordingly, treatment of the patients with these drugs was not effective. To date, 13 patients have received a personalized treatment and 6 achieved durable partial remissions. Prior testing of candidate treatments in Avatar models correlated with clinical response and helped to select empirical treatments in some patients with no actionable mutations.
Conclusion
The use of full genomic analysis for cancer care is encouraging but presents important challenges that will need to be solved for broad clinical application. Avatar models are a promising investigational platform for therapeutic decision making. While limitations still exist, this strategy should be further tested.
doi:10.1158/1078-0432.CCR-13-3047
PMCID: PMC4322867  PMID: 24634382
5.  Detection of Methylated CDO1 in Plasma of Colorectal Cancer; A PCR Study 
PLoS ONE  2014;9(12):e113546.
Background
Cysteine biology is important for the chemosensitivity of cancer cells. Our research has focused on the epigenetic silencing of cysteine dioxygenase type 1 (CDO1) in colorectal cancer (CRC). In this study, we describe detection of CDO1 methylation in the plasma of CRC patients using methylation specific PCR (Q-MSP) and extensive analysis of the PCR reaction.
Methods
DNA was extracted from plasma, and analysed for methylation of the CDO1 gene using Q-MSP. The detection rate of CDO1 gene methylation was calculated and compared with that of diluted DNA extracted from “positive control” DLD1 cells. CDO1 gene methylation in the plasma of 40 CRC patients that were clinicopathologically analysed was then determined.
Results
(1) The cloned sequence analysis detected 93.3% methylation of the promoter CpG islands of the CDO1 gene of positive control DLD1 cells and 4.7% methylation of the negative control HepG2 CDO1 gene. (2) DLD1 CDO1 DNA could not be detected in this assay if the extracted DNA was diluted ∼1000 fold. The more DNA that was used for the PCR reaction, the more effectively it was amplified in Q-MSP. (3) By increasing the amount of DNA used, methylated CDO1 could be clearly detected in the plasma of 8 (20%) of the CRC patients. However, the percentage of CRC patients detected by methylated CDO1 in plasma was lower than that detected by CEA (35.9%) or CA19-9 (23.1%) in preoperative serum. Combination of CEA/CA19-9 plus plasma methylated CDO1 could increase the rate of detection of curable CRC patients (39.3%) as compared to CEA/CA19-9 (25%).
Conclusion
We have described detection of CDO1 methylation in the plasma of CRC patients. Although CDO1 methylation was not detected as frequently as conventional tumor markers, analysis of plasma CDO1 methylation in combination with CEA/CA19-9 levels increases the detection rate of curable CRC patients.
doi:10.1371/journal.pone.0113546
PMCID: PMC4254285  PMID: 25469504
6.  MDA-9/Syntenin regulates differentiation and angiogenesis programs in head and neck squamous cell carcinoma 
Oncoscience  2014;1(11):725-737.
Little is known about the molecular pathways regulating poor differentiation and invasion of head and neck squamous cell carcinoma (HNSCC). In the present study, we aimed to determine the role of MDA-9/Syntenin, a metastasis associated molecule in HNSCC tumorigenesis. Elevated MDA-9/Syntenin expression was evident in 67% (54/81) primary HNSCC tumors (p=0.001-0.002) and 69% (9/13) pre-neoplastic tissues (p=0.02-0.03). MDA-9/Syntenin overexpression was associated with the stage (p=0.001), grade (p=0.001) and lymph node metastasis (p=0.0001). Silencing of MDA-9/Syntenin in 3 poorly differentiated HNSCC cell lines induced squamous epithelial cell differentiation, disrupted angiogenesis and reduced tumor growth in vitro and in vivo. We confirmed SPRR1B and VEGFR1 as the key molecular targets of MDA-9/Syntenin on influencing HNSCC differentiation and angiogenesis respectively. MDA-9/Syntenin disrupted SPRR1B expression interacting through its PDZ1 domain and altered VEGFR1 expression in vitro and in vivo. VEGFR1 co-localized with MDA-9/Syntenin in HNSCC cell lines and primary tumor. Downregulation of growth regulatory molecules CyclinD1, CDK4, STAT3, PI3K and CTNNB1 was also evident in the MDA-9/Syntenin depleted cells, which was reversed following over-expression of MDA-9/Syntenin in immortalized oral epithelial cells. Our results suggest that early induction of MDA-9/Syntenin expression influences HNSCC progression and should be further evaluated for potential biomarker development.
PMCID: PMC4278274  PMID: 25593999
Head and neck suqamous cell carcinoma; MDA-9/Syntenin; differentiation; SPRR1B; VEGFR1
7.  Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells 
The treatment of locoregional recurrence (LRR) of head and neck squamous cell carcinoma (HNSCC) often requires a combination of surgery, radiation therapy and/or chemotherapy. Survival outcomes are poor and the treatment outcomes are morbid. Cold atmospheric plasma (CAP) is an ionized gas produced at room temperature under laboratory conditions. We have previously demonstrated that treatment with a CAP jet device selectively targets cancer cells using in vitro melanoma and in vivo bladder cancer models. In the present study, we wished to examine CAP selectivity in HNSCC in vitro models, and to explore its potential for use as a minimally invasive surgical approach that allows for specific cancer cell or tumor tissue ablation without affecting the surrounding healthy cells and tissues. Four HNSCC cell lines (JHU-022, JHU-028, JHU-029, SCC25) and 2 normal oral cavity epithelial cell lines (OKF6 and NOKsi) were subjected to cold plasma treatment for durations of 10, 30 and 45 sec, and a helium flow of 20 l/min−1 for 10 sec was used as a positive treatment control. We showed that cold plasma selectively diminished HNSCC cell viability in a dose-response manner, as evidenced by MTT assays; the viability of the OKF6 cells was not affected by the cold plasma. The results of colony formation assays also revealed a cell-specific response to cold plasma application. Western blot analysis did not provide evidence that the cleavage of PARP occurred following cold plasma treatment. In conclusion, our results suggest that cold plasma application selectively impairs HNSCC cell lines through non-apoptotic mechanisms, while having a minimal effect on normal oral cavity epithelial cell lines.
doi:10.3892/ijmm.2014.1849
PMCID: PMC4152136  PMID: 25050490
head and neck squamous cell carcinoma; cold atmospheric plasma treatment; cold atmospheric plasma selectivity; head and neck squamous cell carcinoma adjuvant treatment; HPV-positive head and neck squamous cell carcinoma; HPV-negative head and neck squamous cell carcinoma
8.  PD-L1 expression in the Merkel cell carcinoma microenvironment: Association with inflammation, Merkel cell polyomavirus and overall survival 
Cancer immunology research  2013;1:10.1158/2326-6066.CIR-13-0034.
Merkel cell carcinoma (MCC) is a lethal, virus-associated cancer that lacks effective therapies for advanced disease. Agents blocking the PD-1/PD-L1 pathway have demonstrated objective, durable tumor regressions in patients with advanced solid malignancies and efficacy has been linked to PD-L1 expression in the tumor microenvironment. To investigate whether MCC might be a target for PD-1/PD-L1 blockade, we examined MCC PD-L1 expression, its association with tumor-infiltrating lymphocytes (TILs), Merkel cell polyomavirus (MCPyV), and overall survival. Sixty-seven MCC specimens from 49 patients were assessed with immunohistochemistry for PD-L1 expression by tumor cells and TILs, and immune infiltrates were characterized phenotypically. Tumor cell and TIL PD-L1 expression were observed in 49% and 55% of patients, respectively. In specimens with PD-L1(+) tumor cells, 97% (28/29) demonstrated a geographic association with immune infiltrates. Among specimens with moderate-severe TIL intensities, 100% (29/29) demonstrated PD-L1 expression by tumor cells. Significant associations were also observed between the presence of MCPyV DNA, a brisk inflammatory response, and tumor cell PD-L1 expression: MCPyV(−) tumor cells were uniformly PD-L1(−). Taken together, these findings suggest that a local tumor-specific and potentially MCPyV-specific immune response drives tumor PD-L1 expression, similar to previous observations in melanoma and head and neck squamous cell carcinomas. In multivariate analyses, PD-L1(−) MCCs were independently associated with worse overall survival (hazard ratio 3.12; 95% CI, 1.28-7.61; p=0.012). These findings suggest that an endogenous immune response promotes PD-L1 expression in the MCC microenvironment when MCPyV is present, and provide a rationale for investigating therapies blocking PD-1/PD-L1 for patients with MCC.
doi:10.1158/2326-6066.CIR-13-0034
PMCID: PMC3885978  PMID: 24416729
Merkel cell carcinoma; PD-L1; B7-H1; immunotherapy; Merkel cell polyomavirus
9.  An epigenetic marker panel for recurrence risk prediction of low grade papillary urothelial cell carcinoma (LGPUCC) and its potential use for surveillance after transurethral resection using urine 
Oncotarget  2014;5(14):5218-5233.
By a candidate gene approach, we analyzed the promoter methylation (PM) of 8 genes (ARF, TIMP3, RAR-β2, NID2, CCNA1, AIM1, CALCA and CCND2) by quantitative methylation specific PCR (QMSP) in the DNA of 17 non-recurrent and 19 recurrent noninvasive low grade papillary urothelial cell carcinoma (LGPUCC) archival tissues. Among the genes tested, by establishing an empiric cutoff value, CCND2, CCNA1, NID2, and CALCA showed higher frequency of methylation in recurrent than in non-recurrent LGPUCC: CCND2 10/19 (53%) vs. 2/17 (12%) (p=0.014); CCNA1 11/19 (58%) vs. 4/17 (23.5%) (p=0.048); NID2 13/19 (68%) vs. 3/17 (18%) (p=0.003) and CALCA 10/19 (53%) vs. 4/17 (23.5%) (p=0.097), respectively. We further analyzed PM of CCND2, CCNA1, and CALCA in urine DNA from UCC patients including LGPUCC and controls. The frequency of CCND2, CCNA1, and CALCA was significantly higher (p<0.0001) in urine of UCC cases [38/148 (26%), 50/73 (68%) and 94/148 (63.5%) respectively] than controls [0/56 (0%), 10/60 (17%) and 16/56 (28.5%), respectively)]. Most importantly we found at least one of the 3 markers were methylated positive in 25 out of 30 (83%) cytology negative LGPUCC cases. We also explored the biological function of CCNA1 in UCC. Prospective confirmatory studies are needed to develop a reliable tool for prediction of recurrence using primary LGPUCC tissues and/or urine.
PMCID: PMC4170626  PMID: 24980822
LGPUCC; Recurrence; Epigenetics; Biomarkers; DNA methylation
10.  Differential promoter methylation of kinesin family member 1a in plasma is associated with breast cancer and DNA repair capacity 
Oncology Reports  2014;32(2):505-512.
Methylation alterations of CpG islands, CpG island shores and first exons are key events in the formation and progression of human cancer, and an increasing number of differentially methylated regions and genes have been identified in breast cancer. Recent studies of the breast cancer methylome using deep sequencing and microarray platforms are providing a novel insight on the different roles aberrant methylation plays in molecular subtypes of breast cancer. Accumulating evidence from a subset of studies suggests that promoter methylation of tumor-suppressor genes associated with breast cancer can be quantified in circulating DNA. However, there is a paucity of studies that examine the combined presence of genetic and epigenetic alterations associated with breast cancer using blood-based assays. Dysregulation of DNA repair capacity (DRC) is a genetic risk factor for breast cancer that has been measured in lymphocytes. We isolated plasma DNA from 340 participants in a breast cancer case control project to study promoter methylation levels of five genes previously shown to be associated with breast cancer in frozen tissue and in cell line DNA: MAL, KIF1A, FKBP4, VGF and OGDHL. Methylation of at least one gene was found in 49% of the cases compared to 20% of the controls. Three of the four genes had receiver characteristic operator curve values of ≥0.50: MAL (0.64), KIF1A (0.51) and OGDHL (0.53). KIF1A promoter methylation was associated with breast cancer and inversely associated with DRC. This is the first evidence of a significant association between genetic and epigenetic alterations in breast cancer using blood-based tests. The potential diagnostic utility of these biomarkers and their relevance for breast cancer risk prediction should be examined in larger cohorts.
doi:10.3892/or.2014.3262
PMCID: PMC4091885  PMID: 24927296
epigenetics; epigenetic biomarker panel; breast cancer; KIF1A; OGDHL; FKBP4; VGF; MAL promoter methylation; DNA repair capacity
11.  Clinical Correlates of Promoter Hypermethylation of Four Target Genes in Head and Neck Cancer: A Cooperative Group Correlative Study 
Background
Promoter hypermethylation is a well documented mechanism for tumor-specific alteration of suppressor gene activity in human malignancy including Head and Neck Cancer (HNC). The abrogation of specific suppressor gene activity may influence tumor behavior and clinical outcome. In this study we examined methylation of DCC, KIF1A, EDNRB, and p16INK4a in a large cohort of HNC patients from ECOG 4393/RTOG 9614 to identify clinical correlates of methylation of these genes.
Methods
Methylation was assessed by quantitative methylation-specific polymerase chain reaction in DNA from tumor specimens and was considered as a continuous and a binary variable. Clinical data including demographics, stage, risk factor exposure, treatment, and outcome were collected by ECOG and RTOG. Methylation status was also correlated with mutation of TP53 (previously reported) and HPV status.
Results
Methylation results were available for 368 cases, 353 of which also have p53 mutation status. At least one methylation event was present in all tumors. In multivariate analysis of the entire cohort, methylation of p16 was associated with decreased survival (HR=1.008, p=0.045). However, in tumors with disruptive TP53 mutation (poor prognostic group), the additional presence of methylation of p16 was protective (p=0.019 considering p16 methylation as a continuous variable).
Conclusion
Methylation of tumor-related genes contributes to the biological behavior of HNC and influences overall survival in conjunction with other known prognostic molecular events.
doi:10.1158/1078-0432.CCR-12-3047
PMCID: PMC3642232  PMID: 23444219
head and neck cancer; methylation; survival
12.  Epigenetic inactivation of VGF associated with Urothelial Cell Carcinoma and its potential as a non-invasive biomarker using urine 
Oncotarget  2014;5(10):3350-3361.
Background: To identify new epigenetic markers and further characterize Urothelial Cell Carcinoma (UCC), we tested the promoter methylation (PM) status of 19 genes previously identified as cancer specific methylated genes in other solid tumors.
Methods: We used bisulfite sequencing, methylation specific PCR and quantitative methylation specific PCR (QMSP) to test the PM status of 19 genes in urothelial cancer cell lines.
Results: Among the 19 genes tested, VGF was found to be completely methylated in several UCC cell lines. VGF QMSP analysis showed that methylation values of almost all the primary 19 UCC tissues were higher than the paired normal tissues (P=0.009). In another cohort, 12/35 (34.3%) of low grade UCC cases displayed VGF methylation. As a biomarker for non-invasive detection of UCC, VGF showed a significantly higher frequency of methylation in urine from UCC cases (8/20) compared to controls (1/20) (P=0.020). After treatment of cell lines with 5-Aza-2'-deoxycytidine, VGF was robustly re-expressed. Forced expression of VGF in bladder cancer cell lines inhibited cell growth.
Conclusion: Selection of candidates from genome-wide screening approach in other solid tumors successfully identified UCC specific methylated genes.
PMCID: PMC4102814  PMID: 24830820
UCC; Epigenetics; Biomarker; Methylation
13.  Genome-Wide and Gene-Specific Epigenomic Platforms for Hepatocellular Carcinoma Biomarker Development Trials 
The majority of the epigenomic reports in hepatocellular carcinoma have focused on identifying novel differentially methylated drivers or passengers of the oncogenic process. Few reports have considered the technologies in place for clinical translation of newly identified biomarkers. The aim of this study was to identify epigenomic technologies that need only a small number of samples to discriminate HCC from non-HCC tissue, a basic requirement for biomarker development trials. To assess that potential, we used quantitative Methylation Specific PCR, oligonucleotide tiling arrays, and Methylation BeadChip assays. Concurrent global DNA hypomethylation, gene-specific hypermethylation, and chromatin alterations were observed as a hallmark of HCC. A global loss of promoter methylation was observed in HCC with the Illumina BeadChip assays and the Nimblegen oligonucleotide arrays. HCC samples had lower median methylation peak scores and a reduced number of significant promoter-wide methylated probes. Promoter hypermethylation of RASSF1A, SSBP2, and B4GALT1 quantified by qMSP had a sensitivity ranging from 38% to 52%, a specificity of 100%, and an AUC from 0.58 to 0.75. A panel combining these genes with HCC risk factors had a sensitivity of 87%, a specificity of 100%, and an AUC of 0.91.
doi:10.1155/2014/597164
PMCID: PMC4009191  PMID: 24829571
14.  Genome-wide methylation profiling and the PI3K-AKT pathway analysis associated with smoking in urothelial cell carcinoma 
Cell Cycle  2013;12(7):1058-1070.
Urothelial cell carcinoma (UCC) is the second most common genitourinary malignant disease in the USA, and tobacco smoking is the major known risk factor for UCC development. Exposure to carcinogens, such as those contained in tobacco smoke, is known to directly or indirectly damage DNA, causing mutations, chromosomal deletion events and epigenetic alterations in UCC. Molecular studies have shown that chromosome 9 alterations and P53, RAS, RB and PTEN mutations are among the most frequent events in UCC. Recent studies suggested that continuous tobacco carcinogen exposure drives and enhances the selection of epigenetically altered cells in UCC, predominantly in the invasive form of the disease. However, the sequence of molecular events that leads to UCC after exposure to tobacco smoke is not well understood.
To elucidate molecular events that lead to UCC oncogenesis and progression after tobacco exposure, we developed an in vitro cellular model for smoking-induced UCC. SV-40 immortalized normal HUC1 human bladder epithelial cells were continuously exposed to 0.1% cigarette smoke extract (CSE) until transformation occurred. Morphological alterations and increased cell proliferation of non-malignant urothelial cells were observed after 4 months (mo) of treatment with CSE. Anchorage-independent growth assessed by soft agar assay and increase in the migratory and invasive potential was observed in urothelial cells after 6 mo of CSE treatment. By performing a PCR mRNA expression array specific to the PI3K-AKT pathway, we found that 26 genes were upregulated and 22 genes were downregulated after 6 mo of CSE exposure of HUC1 cells. Among the altered genes, PTEN, FOXO1, MAPK1 and PDK1 were downregulated in the transformed cells, while AKT1, AKT2, HRAS, RAC1 were upregulated. Validation by RT-PCR and western blot analysis was then performed. Furthermore, genome-wide methylation analysis revealed MCAM, DCC and HIC1 are hypermethylated in CSE-treated urothelial cells when compared with non-CSE exposed cells. The methylation status of these genes was validated using quantitative methylation-specific PCR (QMSP), confirming an increase in methylation of CSE-treated urothelial cells compared to untreated controls. Therefore, our findings suggest that a tobacco signature could emerge from distinctive patterns of genetic and epigenetic alterations and can be identified using an in vitro cellular model for the development of smoking-induced cancer.
doi:10.4161/cc.24050
PMCID: PMC3646862  PMID: 23435205
bladder cancer; cigarette smoke extract; epigenetics; in vitro transformation; smoking; urothelial cell carcinoma
15.  Cigarette smoke induces methylation of the tumor suppressor gene NISCH 
Epigenetics  2013;8(4):383-388.
We have previously identified a putative tumor suppressor gene, NISCH, whose promoter is methylated in lung tumor tissue as well as in plasma obtained from lung cancer patients. NISCH was observed to be more frequently methylated in smoker lung cancer patients than in non-smoker lung cancer patients. Here, we investigated the effect of tobacco smoke exposure on methylation of the NISCH gene. We tested methylation of NISCH after oral keratinocytes were exposed to mainstream and side stream cigarette smoke extract in culture. Methylation of the promoter region of the NISCH gene was also evaluated in plasma obtained from lifetime non-smokers and light smokers (< 20 pack/year), with and without lung tumors, and heavy smokers (20+ pack/year) without disease. Promoter methylation of NISCH was tested by quantitative fluorogenic real-time PCR in all samples. Promoter methylation of NISCH occurred after exposure to mainstream tobacco smoke as well as to side stream tobacco smoke in normal oral keratinocyte cell lines. NISCH methylation was also detected in 68% of high-risk, heavy smokers without detectable tumors. Interestingly, in light smokers, NISCH methylation was present in 69% of patients with lung cancer and absent in those without disease. Our pilot study indicates that tobacco smoke induces methylation changes in the NISCH gene promoter before any detectable cancer. Methylation of the NISCH gene was also found in lung cancer patients’ plasma samples. After confirming these findings in longitudinally collected plasma samples from high-risk populations (such as heavy smokers), examining patients for hypermethylation of the NISCH gene may aid in identifying those who should undergo additional screening for lung cancer.
doi:10.4161/epi.24195
PMCID: PMC3674047  PMID: 23503203
lung cancer; Nisch; methylation; smoking; tobacco
16.  Validation of nucleolar protein 4 as a novel methylated tumor suppressor gene in head and neck cancer 
Oncology Reports  2013;31(2):1014-1020.
Methylation of CpG islands in the promoter region of genes acts as a significant mechanism of epigenetic gene silencing in head and neck cancer. In the present study, we assessed the association of epigenetic alterations of a panel of 12 genes [nucleolar protein 4 (NOL4), iroquois homeobox 1 (IRX1), SLC5A8, LRRC3B, FUSSEL18, EBF3, GBX2, HMX2, SEPT9, ALX3, SOCS3 and LHX6] with head and neck squamous cell carcinoma (HNSCC) via a candidate gene approach. After the initial screening of methylated CpG islands on the promoter regions by bisulfite sequencing using salivary rinse samples, only two genes had methylated CpG dinucleotides on their promoter regions in tumor samples and absence of methylated CpGs were found in normal salivary rinse samples after bisulfite modification and bisulfite sequencing. We then performed real-time quantitative methylation-specific PCR (QMSP) on 16 salivary rinse and 14 normal mucosal samples from healthy subjects and 33 HNSCC tumor samples for the two genes selected. After validation with QMSP, one gene, NOL4, was highly methylated (91%) in tumor samples and unmethylated in normal salivary rinses and minimally methylated in normal mucosal samples demonstrating cancer-specific methylation in HNSCC tissues. Although the IRX1 gene was observed as methylated in normal mucosal and salivary rinse samples, the methylation values of these normal samples were very low (<10%). In conclusion, we identified NOL4 as a highly specific promoter methylated gene associated with HNSCC. IRX1 may have potential as a biomarker for HNSCC and should be assessed in a larger cohort.
doi:10.3892/or.2013.2927
PMCID: PMC3896520  PMID: 24337411
nucleolar protein 4; methylation; head and neck cancer; candidate gene approach
17.  Tissue Imprint for Molecular Mapping of Deep Surgical Margins in Patients with Head and Neck Squamous Cell Carcinoma 
Head & neck  2012;34(11):1529-1536.
Background
Tissue imprinting can generate molecular marker maps of tumor cells at deep surgical margins. This study evaluates the feasibility of this method for detection of residual head and neck squamous cell carcinoma (HNSCC).
Methods
Paired fresh tissue and nitrocellulose membrane imprints of tumor and deep margins were collected from 17 HNSCC resections. DNA was amplified using quantitative methylation-specific PCR (qMSP) for p16, DCC, KIF1A, and EDNRB. Levels of methylation in tumors and deep margins were compared.
Results
DNA from imprints was adequate for qMSP. Hypermethylation of target genes was present in 12/17 tumors and in 8 deep margins. Methylation level was better from margin imprints than tissue. During follow-up (median 13 months), local or regional recurrences occurred in six cases of which five had molecularly positive margins.
Conclusion
Tissue imprinting is feasible for molecular detection of residual tumor at deep surgical margins and may correlate with locoregional recurrence.
doi:10.1002/hed.21982
PMCID: PMC3377010  PMID: 22223471
Tissue imprint; head and neck squamous cell carcinoma; deep surgical margin; molecular diagnosis; quantitative methylation-specific PCR; Imprint; Deep margin; Surgery; Recurrence
20.  Association Between BRAF V600E Mutation and Mortality in Patients With Papillary Thyroid Cancer 
Importance
BRAF V600E is a prominent oncogene in papillary thyroid cancer (PTC), but its role in PTC-related patient mortality has not been established.
Objective
To investigate the relationship between BRAF V600E mutation and PTC-related mortality.
Design, Setting, and Participants
Retrospective study of 1849 patients (1411 women and 438 men) with a median age of 46 years (interquartile range, 34–58 years) and an overall median follow-up time of 33 months (interquartile range, 13–67 months) after initial treatment at 13 centers in 7 countries between 1978 and 2011.
Main Outcomes and Measures
Patient deaths specifically caused by PTC.
Results
Overall, mortality was 5.3% (45/845; 95% CI, 3.9%–7.1%) vs 1.1% (11/1004; 95% CI, 0.5%–2.0%) (P<.001) in BRAF V600E–positive vs mutation-negative patients. Deaths per 1000 person-years in the analysis of all PTC were 12.87 (95% CI, 9.61–17.24) vs 2.52 (95% CI, 1.40–4.55) in BRAF V600E–positive vs mutation-negative patients; the hazard ratio (HR) was 2.66 (95% CI, 1.30–5.43) after adjustment for age at diagnosis, sex, and medical center. Deaths per 1000 person-years in the analysis of the conventional variant of PTC were 11.80 (95% CI, 8.39–16.60) vs 2.25 (95% CI, 1.01–5.00) in BRAF V600E–positive vs mutation-negative patients; the adjusted HR was 3.53 (95% CI, 1.25–9.98). When lymph node metastasis, extrathyroidal invasion, and distant metastasis were also included in the model, the association of BRAF V600E with mortality for all PTC was no longer significant (HR, 1.21; 95% CI, 0.53–2.76). A higher BRAF V600E–associated patient mortality was also observed in several clinicopathological subcategories, but statistical significance was lost with adjustment for patient age, sex, and medical center. For example, in patients with lymph node metastasis, the deaths per 1000 person-years were 26.26 (95% CI, 19.18–35.94) vs 5.93 (95% CI, 2.96–11.86) in BRAF V600E–positive vs mutation-negative patients (unadjusted HR, 4.43 [95% CI, 2.06–9.51]; adjusted HR, 1.46 [95% CI, 0.62–3.47]). In patients with distant tumor metastasis, deaths per 1000 person-years were 87.72 (95% CI, 62.68–122.77) vs 32.28 (95% CI, 16.14–64.55) in BRAF V600E–positive vs mutation-negative patients (unadjusted HR, 2.63 [95% CI, 1.21–5.72]; adjusted HR, 0.84 [95% CI, 0.27–2.62]).
Conclusions and Relevance
In this retrospective multicenter study, the presence of the BRAF V600E mutation was significantly associated with increased cancer-related mortality among patients with PTC. Because overall mortality in PTC is low and the association was not independent of tumor features, how to use BRAF V600E to manage mortality risk in patients with PTC is unclear. These findings support further investigation of the prognostic and therapeutic implications of BRAF V600E status in PTC.
doi:10.1001/jama.2013.3190
PMCID: PMC3791140  PMID: 23571588
21.  Association of Promoter Methylation of VGF and PGP9.5 with Ovarian Cancer Progression 
PLoS ONE  2013;8(9):e70878.
Purpose
To elucidate the role of biological and clinical impact of aberrant promoter hypermethylation (PH) in ovarian cancer (OC).
Experimental Design
PH of PGP9.5, HIC1, AIM1, APC, PAK3, MGMT, KIF1A, CCNA1, ESR1, SSBP2, GSTP1, FKBP4 and VGF were assessed by quantitative methylation specific PCR (QMSP) in a training set. We selected two genes (VGF and PGP9.5) for further QMSP analysis in a larger independent validation (IV) set with available clinical data. Biologic relevance of VGF gene was also evaluated.
Results
PH frequency for PGP9.5 and VGF were 85% (316/372) and 43% (158/366) respectively in the IV set of samples while no PH was observed in controls. In 372 OC cases with available follow up, PGP9.5 and VGF PH were correlated with better patient survival [Hazard Ratios (HR) for overall survival (OS) were 0.59 (95% Confidence Intervals (CI)  = 0.42–0.84, p = 0.004), and 0.73 (95%CI = 0.55–0.97, p = 0.028) respectively, and for disease specific survival (DSS) were 0.57 (95%CI 0.39–0.82, p = 0.003) and 0.72 (95%CI 0.54–0.96, p = 0.027). In multivariate analysis, VGF PH remained an independent prognostic factor for OS (HR 0.61, 95%CI 0.43–0.86, p<0.005) and DSS (HR 0.58, 95%CI 0.41–0.83, p<0.003). Furthermore, PGP9.5 PH was significantly correlated with lower grade, early stage tumors, and with absence of residual disease. Forced expression of VGF in OC cell lines inhibited cell growth.
Conclusions
Our results indicate that VGF and PGP9.5 PH are potential biomarkers for ovarian carcinoma. Confirmatory cohorts with longitudinal follow-up are required in future studies to define the clinical impact of VGF and PGP9.5 PH before clinical application.
doi:10.1371/journal.pone.0070878
PMCID: PMC3785492  PMID: 24086249
22.  The Relative Expression of Mig6 and EGFR Is Associated with Resistance to EGFR Kinase Inhibitors 
PLoS ONE  2013;8(7):e68966.
The sensitivity of only a few tumors to anti-epidermal growth factor receptor EGFR tyrosine kinase inhibitors (TKIs) can be explained by the presence of EGFR tyrosine kinase (TK) domain mutations. In addition, such mutations were rarely found in tumor types other than lung, such as pancreatic and head and neck cancer. In this study we sought to elucidate mechanisms of resistance to EGFR-targeted therapies in tumors that do not harbor TK sensitizing mutations in order to identify markers capable of guiding the decision to incorporate these drugs into chemotherapeutic regimens. Here we show that EGFR activity was markedly decreased during the evolution of resistance to the EGFR tyrosine kinase inhibitor (TKI) erlotinib, with a concomitant increase of mitogen-inducible gene 6 (Mig6), a negative regulator of EGFR through the upregulation of the PI3K-AKT pathway. EGFR activity, which was more accurately predicted by the ratio of Mig6/EGFR, highly correlated with erlotinib sensitivity in panels of cancer cell lines of different tissue origins. Blinded testing and analysis in a prospectively followed cohort of lung cancer patients treated with gefitinib alone demonstrated higher response rates and a marked increased in progression free survival for patients with a low Mig6/EGFR ratio (approximately 100 days, P = 0.01).
doi:10.1371/journal.pone.0068966
PMCID: PMC3729565  PMID: 23935914
23.  Detection of Mitochondrial DNA Alterations in Urine from Urothelial Cell Carcinoma Patients 
The present study aims at understanding the timing and nature of mitochondrial DNA (mtDNA) alterations in urothelial cell carcinoma (UCC) and their detection in urine sediments. The entire 16.5 kb mitochondrial genome was sequenced in matched normal lymphocytes, tumor and urine sediments from 31 UCC patients and compared with different clinical stages and histological grades. The mtDNA content index was examined in all the specimens. Sixty five percent (20/31) of the patients harbored at least 1 somatic mtDNA mutation. A total of 25 somatic mtDNA mutations were detected, which were more frequent in the respiratory complex coding regions (Complex-I, III, IV and V) of the mtDNA and significantly affected respiratory complex-III compared to the other complexes (P=0.021–0.039). Compared to stage Ta, mtDNA mutation was higher in stage T1 and significantly higher in stage T2 (P=0.01) patients. MtDNA mutation was also significantly higher (P=0.04) in stage T2 compared to stage T1 patients. Ninety percent (18/20) of the patients harboring mtDNA mutation in the tumor also had mutation in their urine sediments. Eighty percent (20/25) of the tumor-associated mtDNA mutations was detectable in the urine sediments. Compared to the normal lymphocytes, the mtDNA content increased significantly in the tumor (P=0.0013) and corresponding urine sediments (P=0.0025) in 19/25 (76%) patients analyzed. Our results indicate that mtDNA alterations occur frequently in progressive stages of UCC patients and are readily detectable in the urine sediments. MtDNA mutations appear to provide a promising tool for developing early detection and monitoring strategies for UCC patients.
doi:10.1002/ijc.26357
PMCID: PMC3328657  PMID: 21826645
Urothelial cell carcinoma; mitochondria; mtDNA alteration; urine detection
24.  AIM1 PROMOTER HYPERMETHYLATION AS A PREDICTOR OF DECREASED RISK OF RECURRENCE FOLLOWING RADICAL PROSTATECTOMY 
The Prostate  2011;72(10):1133-1139.
Purpose
To evaluate the prognostic significance of six epigenetic biomarkers (AIM1, CDH1, KIF1A, MT1G, PAK3 and RBM6 promoter hypermethlation) in a homogeneous group of prostate cancer patients, following radical prostatectomy.
Patients and Methods
Biomarker analyses were performed retrospectively on tumors from 95 prostate cancer patients all with a Gleason score of 3+4=7 and a minimum follow up period of 8 years. Using Quantitative Methylation Specific PCR (QMSP), we analyzed the promoter region of six genes in primary prostate tumor tissues. Time to any progression was the primary endpoint and development of metastatic disease and/or death from prostate cancer was a secondary endpoint. The association of clinicopathological and biomolecular risk factors to recurrence was performed using the Log-rank test and Cox proportional hazards model for multivariate analysis. To identify independent prognostic factors, a stepwise selection method was used.
Results
At a median follow-up time of 10 years, 48 patients (50.5%) had evidence of recurrence: biochemical/PSA relapse, metastases, or death from prostate cancer. In the final multivariate analysis for time to progression, the significant factors were: older age, HR=0.95 (95% CI: 0.91, 1.0) (P=0.03), positive lymph nodes HR=2.11 (95%CI: 1.05, 4.26) (P=0.04) and decreased hypermethylation of AIM1 HR=0.45 (95%CI: 0.2, 1.0) (P=0.05).
Conclusions
Methylation status of AIM1 in the prostate cancer specimen may predict for time to recurrence in Gleason 3+4=7 patients undergoing prostatectomy. These results should be validated in a larger and unselected cohort.
doi:10.1002/pros.22461
PMCID: PMC3360823  PMID: 22127895
25.  Correlation between BRAF mutation and promoter methylation of TIMP3, RARβ2 and RASSF1A in thyroid cancer 
Epigenetics  2012;7(7):710-719.
Our aim was to comprehensively analyze promoter hypermethylation of a panel of novel and known methylation markers for thyroid neoplasms and to establish their relationship with BRAF mutation and clinicopathologic parameters of thyroid cancer. A cohort of thyroid tumors, consisting of 44 cancers and 44 benign thyroid lesions, as well as 15 samples of adjacent normal thyroid tissue, was evaluated for BRAF mutation and promoter hypermethylation. Genes for quantitative methylation specific PCR (QMSP) were selected by a candidate gene approach. Twenty-two genes were tested: TSHR, RASSF1A, RARβ2, DAPK, hMLH1, ATM, S100, p16, CTNNB1, GSTP1, CALCA, TIMP3, TGFßR2, THBS1, MINT1, CTNNB1, MT1G, PAK3, NISCH, DCC, AIM1 and KIF1A. The PCR-based “mutector assay” was used to detect BRAF mutation. All p values reported are two sided. Considerable overlap was seen in the methylation markers among the different tissue groups. Significantly higher methylation frequency and level were observed for KIF1A and RARß2 in cancer samples compared with benign tumors. A negative correlation between BRAF mutation and RASSF1A methylation, and a positive correlation with RARß2 methylation were observed in accordance with previous results. In addition, positive correlation with TIMP3 and a marginal correlation with DCC methylation were observed. The present study constitutes a comprehensive promoter methylation profile of thyroid neoplasia and shows that results must be analyzed in a tissue-specific manner to identify clinically useful methylation markers. Integration of genetic and epigenetic changes in thyroid cancer will help identify relevant biologic pathways that drive its development.
doi:10.4161/epi.20524
PMCID: PMC3414391  PMID: 22694820
BRAF; RARβ2; RASSF1A; TIMP3; biomarkers; hypermethylation; thyroid cancer; thyroid tissue

Results 1-25 (107)