PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Geographic Divergence of Bovine and Human Shiga Toxin–Producing Escherichia coli O157:H7 Genotypes, New Zealand1 
Emerging Infectious Diseases  2014;20(12):1980-1989.
A historically introduced subset of globally circulating strains continue to evolve and be transmitted between cattle and humans.
Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a zoonotic pathogen of public health concern worldwide. To compare the local and large-scale geographic distributions of genotypes of STEC O157:H7 isolates obtained from various bovine and human sources during 2008–2011, we used pulsed-field gel electrophoresis and Shiga toxin–encoding bacteriophage insertion (SBI) typing. Using multivariate methods, we compared isolates from the North and South Islands of New Zealand with isolates from Australia and the United States. The STEC O157:H7 population structure differed substantially between the 2 islands and showed evidence of finer scale spatial structuring, which is consistent with highly localized transmission rather than disseminated foodborne outbreaks. The distribution of SBI types differed markedly among isolates from New Zealand, Australia, and the United States. Our findings also provide evidence for the historic introduction into New Zealand of a subset of globally circulating STEC O157:H7 strains that have continued to evolve and be transmitted locally between cattle and humans.
doi:10.3201/eid2012.140281
PMCID: PMC4257794  PMID: 25568924
molecular epidemiology; Shiga toxin–producing Escherichia coli O157:H7; genotype; Shiga toxin–encoding bacteriophage insertion typing; cattle; transmission; New Zealand; geographic divergence; population structure; proportional similarity index; enteric infections; bacteria
2.  Lineage and Genogroup-Defining Single Nucleotide Polymorphisms of Escherichia coli O157:H7 
Applied and Environmental Microbiology  2013;79(22):7036-7041.
Escherichia coli O157:H7 is a zoonotic human pathogen for which cattle are an important reservoir host. Using both previously published and new sequencing data, a 48-locus single nucleotide polymorphism (SNP)-based typing panel was developed that redundantly identified 11 genogroups that span six of the eight lineages recently described for E. coli O157:H7 (J. L. Bono, T. P. Smith, J. E. Keen, G. P. Harhay, T. G. McDaneld, R. E. Mandrell, W. K. Jung, T. E. Besser, P. Gerner-Smidt, M. Bielaszewska, H. Karch, M. L. Clawson, Mol. Biol. Evol. 29:2047–2062, 2012) and additionally defined subgroups within four of those lineages. This assay was applied to 530 isolates from human and bovine sources. The SNP-based lineage groups were concordant with previously identified E. coli O157:H7 genotypes identified by other methods and were strongly associated with carriage of specific Stx genes. Two SNP lineages (Ia and Vb) were disproportionately represented among cattle isolates, and three others (IIa, Ib, and IIb) were disproportionately represented among human clinical isolates. This 48-plex SNP assay efficiently and economically identifies biologically relevant lineages within E. coli O157:H7.
doi:10.1128/AEM.02173-13
PMCID: PMC3811523  PMID: 24014531
3.  A prospective case–control and molecular epidemiological study of human cases of Shiga toxin-producing Escherichia coli in New Zealand 
BMC Infectious Diseases  2013;13:450.
Background
Shiga toxin-producing Escherichia coli (STEC) O157:H7 and related non-O157 STEC strains are enteric pathogens of public health concern worldwide, causing life-threatening diseases. Cattle are considered the principal hosts and have been shown to be a source of infection for both foodborne and environmental outbreaks in humans. The aims of this study were to investigate risk factors associated with sporadic STEC infections in humans in New Zealand and to provide epidemiological information about the source and exposure pathways.
Methods
During a national prospective case–control study from July 2011 to July 2012, any confirmed case of STEC infection notified to regional public health units, together with a random selection of controls intended to be representative of the national demography, were interviewed for risk factor evaluation. Isolates from each case were genotyped using pulsed-field gel electrophoresis (PFGE) and Shiga toxin-encoding bacteriophage insertion (SBI) typing.
Results
Questionnaire data from 113 eligible cases and 506 controls were analysed using multivariate logistic regression. Statistically significant animal and environmental risk factors for human STEC infections were identified, notably 'Cattle livestock present in meshblock’ (the smallest geographical unit) (odds ratio 1.89, 95% CI 1.04–3.42), 'Contact with animal manure’ (OR 2.09, 95% CI 1.12–3.90), and 'Contact with recreational waters’ (OR 2.95, 95% CI 1.30–6.70). No food-associated risk factors were identified as sources of STEC infection. E. coli O157:H7 caused 100/113 (88.5%) of clinical STEC infections in this study, and 97/100 isolates were available for molecular analysis. PFGE profiles of isolates revealed three distinctive clusters of genotypes, and these were strongly correlated with SBI type. The variable 'Island of residence’ (North or South Island of New Zealand) was significantly associated with PFGE genotype (p = 0.012).
Conclusions
Our findings implicate environmental and animal contact, but not food, as significant exposure pathways for sporadic STEC infections in humans in New Zealand. Risk factors associated with beef and dairy cattle suggest that ruminants are the most important sources of STEC infection. Notably, outbreaks of STEC infections are rare in New Zealand and this further suggests that food is not a significant exposure pathway.
doi:10.1186/1471-2334-13-450
PMCID: PMC3854066  PMID: 24079470
Prospective case–control study; Sporadic STEC infections; New Zealand; Risk factors; Source attribution; Cattle; Molecular epidemiology; Pathways of infection; Population attributable fractions
4.  Carriage of stx2a Differentiates Clinical and Bovine-Biased Strains of Escherichia coli O157 
PLoS ONE  2012;7(12):e51572.
Background
Shiga toxin (Stx) are cardinal virulence factors of enterohemorrhagic E. coli O157:H7 (EHEC O157). The gene content and genomic insertion sites of Stx-associated bacteriophages differentiate clinical genotypes of EHEC O157 (CG, typical of clinical isolates) from bovine-biased genotypes (BBG, rarely identified among clinical isolates). This project was designed to identify bacteriophage-mediated differences that may affect the virulence of CG and BBG.
Methods
Stx-associated bacteriophage differences were identified by whole genome optical scans and characterized among >400 EHEC O157 clinical and cattle isolates by PCR.
Results
Optical restriction maps of BBG strains consistently differed from those of CG strains only in the chromosomal insertion sites of Stx2-associated bacteriophages. Multiplex PCRs (stx1, stx2a, and stx2c as well as Stx-associated bacteriophage - chromosomal insertion site junctions) revealed four CG and three BBG that accounted for >90% of isolates. All BBG contained stx2c and Stx2c-associated bacteriophage – sbcB junctions. All CG contained stx2a and Stx2a-associated bacteriophage junctions in wrbA or argW.
Conclusions
Presence or absence of stx2a (or another product encoded by the Stx2a-associated bacteriophage) is a parsimonious explanation for differential virulence of BBG and CG, as reflected in the distributions of these genotypes in humans and in the cattle reservoir.
doi:10.1371/journal.pone.0051572
PMCID: PMC3519850  PMID: 23240045
5.  Differential Virulence of Clinical and Bovine-Biased Enterohemorrhagic Escherichia coli O157:H7 Genotypes in Piglet and Dutch Belted Rabbit Models 
Infection and Immunity  2012;80(1):369-380.
Enterohemorrhagic Escherichia coli O157:H7 (EHEC O157) is an important cause of food and waterborne illness in the developed countries. Cattle are a reservoir host of EHEC O157 and a major source of human exposure through contaminated meat products. Shiga toxins (Stxs) are an important pathogenicity trait of EHEC O157. The insertion sites of the Stx-encoding bacteriophages differentiate EHEC O157 isolates into genogroups commonly isolated from cattle but rarely from sick humans (bovine-biased genotypes [BBG]) and those commonly isolated from both cattle and human patients (clinical genotypes [CG]). Since BBG and CG share the cardinal virulence factors of EHEC O157 and are carried by cattle at similar prevalences, the infrequent occurrence of BBG among human disease isolates suggests that they may be less virulent than CG. We compared the virulence potentials of human and bovine isolates of CG and BBG in newborn conventional pig and weaned Dutch Belted rabbit models. CG-challenged piglets experienced severe disease accompanied by early and high mortality compared to BBG-challenged piglets. Similarly, CG-challenged rabbits were likely to develop lesions in kidney and intestine compared with the BBG-challenged rabbits. The CG strains used in this study carried stx2 and produced significantly higher amounts of Stx, whereas the BBG strains carried the stx2c gene variant only. These results suggest that BBG are less virulent than CG and that this difference in virulence potential is associated with the Stx2 subtype(s) carried and/or the amount of Stx produced.
doi:10.1128/IAI.05470-11
PMCID: PMC3255674  PMID: 22025512
6.  Phenotypic Diversity of Escherichia coli O157:H7 Strains Associated With the Plasmid O157 
Escherichia coli O157:H7, a food-borne pathogen, causes hemorrhagic colitis and the hemolytic-uremic syndrome. A putative virulence factor of E. coli O157:H7 is a 60-MDa plasmid (pO157) found in 99% of all clinical isolates and many bovine-derived strains. The well characterized E. coli O157:H7 Sakai strain (Sakai) and its pO157-cured derivative (Sakai-Cu) were compared for phenotypic differences. Sakai-Cu had enhanced survival in synthetic gastric fluid, did not colonize cattle as well as wild-type Sakai, and had unchanged growth rates and tolerance to salt and heat. These results are consistent with our previous findings with another E. coli O157:H7 disease outbreak isolate ATCC 43894 and its pO157-cured (43894-Cu). However, despite the essentially sequence identical pO157 in these strains, Sakai-Cu had changes in antibiotic susceptibility and motility that did not occur in the 43894-Cu strain. This unexpected result was systematically analyzed using phenotypic microarrays testing 1,920 conditions with Sakai, 43894, and the plasmid-cured mutants. The influence of the pO157 differed between strains on a wide number of growth/survival conditions. Relative expression of genes related to acid resistance (gadA, gadX, and rpoS) and flagella production (fliC and flhD) were tested using quantitative real-time PCR and gadA and rpoS expression differed between Sakai-Cu and 43894-Cu. The strain-specific differences in phenotype that resulted from the loss of essentially DNA-sequence identical pO157 were likely due to the chromosomal genetic diversity between strains. The O157:H7 serotype diversity was further highlighted by phenotypic microarray comparisons of the two outbreak strains with a genotype 6 bovine E. coli O157:H7 isolate, rarely associated with human disease.
doi:10.1007/s12275-010-9228-4
PMCID: PMC2951829  PMID: 20571953
E. coli O157:H7; pO157; Phenotype Microarray; Phenotypic diversity
7.  Microbial pathogens in ticks, rodents and a shrew in northern Gyeonggi-do near the DMZ, Korea 
Journal of Veterinary Science  2008;9(3):285-293.
A total of 1,618 ticks [420 individual (adults) and pooled (larvae and nymphs) samples], 369 rodents (Apodemus agrarius, Rattus norvegicus, Tscherskia triton, Mus musculus, and Myodes regulus), and 34 shrews (Crocidura lasiura) that were collected in northern Gyeonggi-do near the Demilitarized Zone (DMZ) of Korea during 2004-2005, were assayed by PCR for selected zoonotic pathogens. From a total of 420 individual and pooled tick DNA samples, Anaplasma (A.) phagocytophilum (16), A. platys (16), Ehrlichia (E.) chaffeensis (63), Borrelia burgdorferi (16), and Rickettsia spp. (198) were detected using species-specific PCR assays. Out of 403 spleens from rodents and shrews, A. phagocytophilum (20), A. platys (34), E. chaffeensis (127), and Bartonella spp. (24) were detected with species-specific PCR assays. These results suggest that fevers of unknown causes in humans and animals in Korea should be evaluated for infections by these vector-borne microbial pathogens.
doi:10.4142/jvs.2008.9.3.285
PMCID: PMC2811841  PMID: 18716449
Bartonella; Borrelia; Rickettsia; rodents; Crocidura lasiura; tick-borne pathogens
8.  Tick-Borne Rickettsial Pathogens in Ticks and Small Mammals in Korea 
In order to investigate the prevalence of tick-borne infectious agents among ticks, ticks comprising five species from two genera (Hemaphysalis spp. and Ixodes spp.) were screened using molecular techniques. Ticks (3,135) were collected from small wild-caught mammals or by dragging/flagging in the Republic of Korea (ROK) and were pooled into a total of 1,638 samples (1 to 27 ticks per pool). From the 1,638 tick samples, species-specific fragments of Anaplasma phagocytophilum (1 sample), Anaplasma platys (52 samples), Ehrlichia chaffeensis (29 samples), Ehrlichia ewingii (2 samples), Ehrlichia canis (18 samples), and Rickettsia rickettsii (28 samples) were amplified by PCR assay. Twenty-one pooled and individual tick samples had mixed infections of two (15 samples) or three (6 samples) pathogens. In addition, 424 spleen samples from small captured mammals (389 rodents, 33 insectivores, and 2 weasels) were screened for selected zoonotic pathogens. Species-specific DNA fragments of A. phagocytophilum (110 samples), A. platys (68 samples), E. chaffeensis (8 samples), E. ewingii (26 samples), E. canis (51 samples), and Rickettsia sp. (22 samples) were amplified by PCR assay. One hundred thirty small mammals had single infections, while 4, 14, and 21 striped field mice (Apodemus agrarius) had mixed infections of four, three, and two pathogens, respectively. Phylogenetic analysis based on nucleotide sequence comparison also revealed that Korean strains of E. chaffeensis clustered closely with those from China and the United States, while the Rickettsia (rOmpA) sequences clustered within a clade together with a Chinese strain. These results suggest that these agents should be considered in differential diagnosis while examining cases of acute febrile illnesses in humans as well as animals in the ROK.
doi:10.1128/AEM.00431-06
PMCID: PMC1563606  PMID: 16957192

Results 1-8 (8)