Search tips
Search criteria

Results 1-25 (59)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Expression of Murine 5-Aminolevulinate Synthase Variants Causes Protoporphyrin IX Accumulation and Light-Induced Mammalian Cell Death 
PLoS ONE  2014;9(4):e93078.
5-Aminolevulinate synthase (ALAS; EC catalyzes the first committed step of heme biosynthesis in animals. The erythroid-specific ALAS isozyme (ALAS2) is negatively regulated by heme at the level of mitochondrial import and, in its mature form, certain mutations of the murine ALAS2 active site loop result in increased production of protoporphyrin IX (PPIX), the precursor for heme. Importantly, generation of PPIX is a crucial component in the widely used photodynamic therapies (PDT) of cancer and other dysplasias. ALAS2 variants that cause high levels of PPIX accumulation provide a new means of targeted, and potentially enhanced, photosensitization. In order to assess the prospective utility of ALAS2 variants in PPIX production for PDT, K562 human erythroleukemia cells and HeLa human cervical carcinoma cells were transfected with expression plasmids for ALAS2 variants with greater enzymatic activity than the wild-type enzyme. The levels of accumulated PPIX in ALAS2-expressing cells were analyzed using flow cytometry with fluorescence detection. Further, cells expressing ALAS2 variants were subjected to white light treatments (21–22 kLux) for 10 minutes after which cell viability was determined. Transfection of HeLa cells with expression plasmids for murine ALAS2 variants, specifically for those with mutated mitochondrial presequences and a mutation in the active site loop, caused significant cellular accumulation of PPIX, particularly in the membrane. Light treatments revealed that ALAS2 expression results in an increase in cell death in comparison to aminolevulinic acid (ALA) treatment producing a similar amount of PPIX. The delivery of stable and highly active ALAS2 variants has the potential to expand and improve upon current PDT regimes.
PMCID: PMC3981678  PMID: 24718052
2.  Relation of Mitochondrial Oxygen Consumption in Peripheral Blood Mononuclear Cells to Vascular Function in Type 2 Diabetes Mellitus 
Recent studies have shown mitochondrial dysfunction and increased production of reactive oxygen species in peripheral blood mononuclear cells (PBMC’s) and endothelial cells from patients with diabetes mellitus. Mitochondria oxygen consumption is coupled to ATP production and also occurs in an uncoupled fashion during formation of reactive oxygen species by components of the electron transport chain and other enzymatic sites. We therefore hypothesized that diabetes would be associated with higher total and uncoupled oxygen consumption in PBMC’s that would correlate with endothelial dysfunction. We developed a method to measure oxygen consumption in freshly isolated PBMC’s and applied it to 26 patients with type 2 diabetes mellitus and 28 non-diabetic controls. Basal (192±47 vs. 161±44 pMoles/min, P=0.01), uncoupled (64±16 vs. 53±16 pMoles/min, P=0.007), and maximal (795±87 vs. 715±128 pMoles/min, P=0.01) oxygen consumption rates were higher in diabetic patients compared to controls. There were no significant correlations between oxygen consumption rates and endothelium-dependent flow-mediated dilation measured by vascular ultrasound. Non-endothelium-dependent nitroglycerin-mediated dilation was lower in diabetics (10.1±6.6 vs. 15.8±4.8%, P=0.03) and correlated with maximal oxygen consumption (R= −0.64, P=0.001). In summary, we found that diabetes mellitus is associated with a pattern of mitochondrial oxygen consumption consistent with higher production of reactive oxygen species. The correlation between oxygen consumption and nitroglycerin-mediated dilation may suggest a link between mitochondrial dysfunction and vascular smooth muscle cell dysfunction that merits further study. Finally, the described method may have utility for assessment of mitochondrial function in larger scale observational and interventional studies in humans.
PMCID: PMC3932629  PMID: 24558030
mitochondria; oxygen consumption; diabetes mellitus; blood mononuclear cells
3.  Dual role of proapoptotic BAD in insulin secretion and beta cell survival 
Nature medicine  2008;14(2):144-153.
The proapoptotic BCL-2 family member BAD resides in a glucokinase-containing complex that regulates glucose-driven mitochondrial respiration. Here, we present genetic evidence of a physiologic role for BAD in glucose-stimulated insulin secretion by beta cells. This novel function of BAD is specifically dependent upon the phosphorylation of its BH3 sequence, previously defined as an essential death domain. We highlight the pharmacologic relevance of phosphorylated BAD BH3 by using cell-permeable, hydrocarbon-stapled BAD BH3 helices that target glucokinase, restore glucose-driven mitochondrial respiration and correct the insulin secretory response in Bad-deficient islets. Our studies uncover an alternative target and function for the BAD BH3 domain and emphasize the therapeutic potential of phosphorylated BAD BH3 mimetics in selectively restoring beta cell function. Furthermore, we show that BAD regulates the physiologic adaptation of beta cell mass during high-fat feeding. Our findings provide genetic proof of the bifunctional activities of BAD in both beta cell survival and insulin secretion.
PMCID: PMC3918232  PMID: 18223655
4.  Correction: A Novel High-Throughput Assay for Islet Respiration Reveals Uncoupling of Rodent and Human Islets 
PLoS ONE  2013;8(12):10.1371/annotation/f21efac9-2906-4a2f-ad22-befcb7714dd0.
PMCID: PMC3855804
5.  Metabolic Master Regulators: Sharing Information among Multiple Systems 
Obesity and diabetes are caused by defects in metabolically sensitive tissues. Attention has been paid to insulin resistance as the key relevant pathosis, with a detailed focus on signal transduction pathways in metabolic tissues. Evidence exists to support an important role for each tissue in metabolic homeostasis and a potential causative role in both diabetes and obesity. The redox metabolome, that coordinates tissue responses and reflects shared control and regulation, is our focus. Consideration is given to the possibility that pathosis results from contributions of all relevant tissues, by virtue of a circulating communication system. Validation of this model would support simultaneous regulation of all collaborating metabolic organs through changes in the circulation, regardless of whether change was initiated exogenously or by a single organ.
PMCID: PMC3502692  PMID: 22939743
6.  Organellar vs Cellular Control of Mitochondrial Dynamics 
Seminars in cell & developmental biology  2010;21(6):10.1016/j.semcdb.2010.01.003.
Mitochondrial dynamics, the fusion and fission of individual mitochondrial units, is critical to the exchange of the metabolic, genetic and proteomic contents of individual mitochondria. In this regard, fusion and fission events have been shown to modulate mitochondrial bioenergetics, as well as several cellular processes including fuel sensing, ATP production, autophagy, apoptosis, and the cell cycle. Regulation of the dynamic events of fusion and fission occur at two redundant and interactive levels. Locally, the microenvironment of the individual mitochondrion can alter its ability to fuse, divide or move through the cell. Globally, nuclear-encoded processes and cellular ionic and second messenger systems can alter or activate mitochondrial proteins, regulate mitochondrial dynamics and concomitantly change the condition of the mitochondrial population. In this review we investigate the different global and local signals that control mitochondrial biology. This discussion is carried out to clarify the different signals that impact the status of the mitochondrial population.
PMCID: PMC3808978  PMID: 20079451
Mitochondrial Dynamics; Cell Cycle; Autophagy; Fusion; Fission; mtDNA; Mitochondrial Movement; Bioenergetics; Mitophagy
7.  Mitochondrial ABC transporters function: the role of ABCB10 (ABC-me) as a novel player in cellular handling of reactive oxygen species 
Biochimica et biophysica acta  2012;1823(10):10.1016/j.bbamcr.2012.07.013.
Mitochondria are one of the major sources of reactive oxygen species (ROS) in the cell. When exceeding the capacity of antioxidant mechanisms, ROS production may lead to different pathologies, such as ischemia-reperfusion injury, neurodegeneration, anemia and ageing. As a consequence of the endosymbiotic origin of mitochondria, eukaryotic cells have developed different transport mechanisms that coordinate mitochondrial function with other cellular compartments. Four mitochondrial ATP-binding cassette (ABC) transporters have been described to date in mammals: ABCB6, ABCB8, ABCB7 and ABCB10. ABCB10 is located in the inner mitochondrial membrane forming homodimers, with the ATP binding domain facing the mitochondrial matrix. ABCB10 expression is highly induced during erythroid differentiation and its overexpression increases hemoglobin synthesis in erythroid cells. However, ABCB10 is also expressed in nonerythroid tissues, suggesting a role not directly related to hemoglobin synthesis. Recent evidence points toward ABCB10 as an important player in the protection from oxidative stress in mammals. In this regard, ABCB10 is required for normal erythropoiesis and cardiac recovery after ischemia-reperfusion, processes intimately related to mitochondrial ROS generation. Here, we review the current knowledge on mitochondrial ABC transporters and ABCB10 and discuss the potential mechanisms by which ABCB10 and its transport activity may regulate oxidative stress. We discuss ABCB10 as a potential therapeutic target for diseases in which increased mitochondrial ROS production and oxidative stress play a major role.
PMCID: PMC3808996  PMID: 22884976
mitochondria; oxidative stress; ABCB10; ABC-me; erythropoiesis; ischemia-reperfusion
8.  The CB1 Antagonist Rimonabant Decreases Insulin Hypersecretion in Rat Pancreatic Islets 
Obesity (Silver Spring, Md.)  2009;17(10):10.1038/oby.2009.234.
Type 2 diabetes and obesity are characterized by elevated nocturnal circulating free fatty acids, elevated basal insulin secretion, and blunted glucose-stimulated insulin secretion (GSIS). The CB1 receptor antagonist, Rimonabant, has been shown to improve glucose tolerance and insulin sensitivity in vivo but its direct effect on islets has been unclear. Islets from lean littermates and obese Zucker (ZF) and Zucker Diabetic Fatty (ZDF) rats were incubated for 24 h in vitro and exposed to 11 mmol/l glucose and 0.3 mmol/l palmitate (GL) with or without Rimonabant. Insulin secretion was determined at basal (3 mmol/l) or stimulatory (15 mmol/l) glucose concentrations. As expected, basal secretion was significantly elevated in islets from obese or GL-treated lean rats whereas the fold increase in GSIS was diminished. Rimonabant decreased basal hypersecretion in islets from obese rats and GL-treated lean rats without decreasing the fold increase in GSIS. However, it decreased GSIS in islets from lean rats without affecting basal secretion. These findings indicate that Rimonabant has direct effects on islets to reduce insulin secretion when secretion is elevated above normal levels by diet or in obesity. In contrast, it appears to decrease stimulated secretion in islets from lean animals but not in obese or GL-exposed islets.
PMCID: PMC3808997  PMID: 19644453
9.  Mitochondrial Fusion, Fission and Autophagy as a Quality Control Axis: The Bioenergetic View 
Biochimica et biophysica acta  2008;1777(9):10.1016/j.bbabio.2008.05.001.
The mitochondrial life cycle consists of frequent fusion and fission events. Ample experimental and clinical data demonstrate that inhibition of either fusion or fission result in deterioration of mitochondrial bioenergetics. While fusion may benefit mitochondrial function by allowing the spreading of metabolites, protein and DNA throughout the network, the functional benefit of fission is not as intuitive. Remarkably, studies that track individual mitochondria through fusion and fission found that the two events are paired and that fusion triggers fission. On average each mitochondrion would go though ~5 fusion:fission cycles every hour. Measurement of Δψm during single fusion and fission events demonstrate that fission may yield uneven daughter mitochondria where the depolarized daughter less likely to become involved in a subsequent fusion and is more likely to be targeted by autophagy. Based on these observations we propose a mechanism by which the integration of mitochondrial fusion, fission and autophagy form a quality maintenance mechanism. According to this hypothesis pairs of fusion and fission allow for the reorganization and sequestration of damaged mitochondrial components into daughter mitochondria that are segregated from the networking pool and then becoming eliminated by autophagy.
PMCID: PMC3809017  PMID: 18519024
Mitochondria; Membrane potential; Fusion; Fission; Autophagy
10.  A Role for Cytosolic Isocitrate Dehydrogenase as a Negative Regulator of Glucose Signaling for Insulin Secretion in Pancreatic ß-Cells 
PLoS ONE  2013;8(10):e77097.
Cytosolic NADPH may act as one of the signals that couple glucose metabolism to insulin secretion in the pancreatic ß-cell. NADPH levels in the cytoplasm are largely controlled by the cytosolic isoforms of malic enzyme and isocitrate dehydrogenase (IDHc). Some studies have provided evidence for a role of malic enzyme in glucose-induced insulin secretion (GIIS) via pyruvate cycling, but the role of IDHc in ß-cell signaling is unsettled. IDHc is an established component of the isocitrate/α–ketoglutarate shuttle that transfers reducing equivalents (NADPH) from the mitochondrion to the cytosol. This shuttle is energy consuming since it is coupled to nicotinamide nucleotide transhydrogenase that uses the mitochondrial proton gradient to produce mitochondrial NADPH and NAD+ from NADP+ and NADH. To determine whether flux through IDHc is positively or negatively linked to GIIS, we performed RNAi knockdown experiments in ß-cells. Reduced IDHc expression in INS 832/13 cells and isolated rat islet ß-cells resulted in enhanced GIIS. This effect was mediated at least in part via the KATP-independent amplification arm of GIIS. IDHc knockdown in INS 832/13 cells did not alter glucose oxidation but it reduced fatty acid oxidation and increased lipogenesis from glucose. Metabolome profiling in INS 832/13 cells showed that IDHc knockdown increased isocitrate and NADP+ levels. It also increased the cellular contents of several metabolites linked to GIIS, in particular some Krebs cycle intermediates, acetyl-CoA, glutamate, cAMP and ATP. The results identify IDHc as a component of the emerging pathways that negatively regulate GIIS.
PMCID: PMC3795013  PMID: 24130841
11.  Diet-Sensitive Sources of Reactive Oxygen Species in Liver Mitochondria: Role of Very Long Chain Acyl-CoA Dehydrogenases 
PLoS ONE  2013;8(10):e77088.
High fat diets and accompanying hepatic steatosis are highly prevalent conditions. Previous work has shown that steatosis is accompanied by enhanced generation of reactive oxygen species (ROS), which may mediate further liver damage. Here we investigated mechanisms leading to enhanced ROS generation following high fat diets (HFD). We found that mitochondria from HFD livers present no differences in maximal respiratory rates and coupling, but generate more ROS specifically when fatty acids are used as substrates. Indeed, many acyl-CoA dehydrogenase isoforms were found to be more highly expressed in HFD livers, although only the very long chain acyl-CoA dehydrogenase (VLCAD) was more functionally active. Studies conducted with permeabilized mitochondria and different chain length acyl-CoA derivatives suggest that VLCAD is also a source of ROS production in mitochondria of HFD animals. This production is stimulated by the lack of NAD+. Overall, our studies uncover VLCAD as a novel, diet-sensitive, source of mitochondrial ROS.
PMCID: PMC3792056  PMID: 24116206
12.  Association of Genetic Variation in the Mitochondrial Genome with Blood Pressure and Metabolic Traits 
Hypertension  2012;60(4):949-956.
Elevated blood pressure (BP) is a major risk factor for cardiovascular disease. Several studies have noted a consistent maternal effect on BP; consequently, mitochondrial DNA (mtDNA) variation has become an additional target of investigation of the missing BP heritability. Analyses of common mtDNA polymorphisms, however, have not found evidence of association with hypertension. To explore associations of relatively rare (frequency < 5%) mtDNA variants with BP, we identified uncommon/rare variants through sequencing the entire mitochondrial genome in 32 unrelated individuals with extreme-high BP in the Framingham Heart Study (FHS) and genotyped 40 mtSNPs in 7,219 FHS participants. The nonsynonymous mtSNP 5913G>A (Asp4Asn) in the cytochrome c oxidase subunit 1 of Complex IV demonstrated significant associations with BP and fasting blood glucose (FBG) levels. Individuals with the rare 5913A allele had, on average, 7 mm Hg higher systolic BP at baseline (Pempirical = 0.05) and 17 mg/dL higher mean FBG over 25 years of follow up (Pempirical = 0.009). Significant associations with FBG levels were also detected for nonsynonymous mtSNP 3316G>A (Ala4Thr) in the NADH dehydrogenase subunit 1 of Complex I. On average, individuals with rare allele 3316A had 17 and 25 mg/dL higher FBG at baseline (Pempirical = 0.01) and over 25 years of follow up (Pempirical = 0.007). Our findings provide the first evidence of putative association of variants in the mitochondrial genome with SBP and FBG in the general population. Replication in independent samples, however, is needed to confirm these putative associations.
PMCID: PMC3753106  PMID: 22949535
Mitochondrial genome; Association study; Genetics; Hypertension; Diabetes
13.  Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells 
Science translational medicine  2013;5(192):192ra85.
Prolonged antibiotic treatment can lead to detrimental side effects in patients, including ototoxicity, nephrotoxicity, and tendinopathy, yet the mechanisms underlying the effects of antibiotics in mammalian systems remain unclear. It has been suggested that bactericidal antibiotics induce the formation of toxic reactive oxygen species (ROS) in bacteria. We show that clinically relevant doses of bactericidal antibiotics—quinolones, aminoglycosides, and β-lactams—cause mitochondrial dysfunction and ROS overproduction in mammalian cells. We demonstrate that these bactericidal antibiotic–induced effects lead to oxidative damage to DNA, proteins, and membrane lipids. Mice treated with bactericidal antibiotics exhibited elevated oxidative stress markers in the blood, oxidative tissue damage, and up-regulated expression of key genes involved in antioxidant defense mechanisms, which points to the potential physiological relevance of these antibiotic effects. The deleterious effects of bactericidal antibiotics were alleviated in cell culture and in mice by the administration of the antioxidant N-acetyl-L-cysteine or prevented by preferential use of bacteriostatic antibiotics. This work highlights the role of antibiotics in the production of oxidative tissue damage in mammalian cells and presents strategies to mitigate or prevent the resulting damage, with the goal of improving the safety of antibiotic treatment in people.
PMCID: PMC3760005  PMID: 23825301
14.  Telomere dysfunction induces metabolic and mitochondrial compromise 
Nature  2011;470(7334):359-365.
Telomere dysfunction activates p53-mediated cellular growth arrest, senescence and apoptosis to drive progressive atrophy and functional decline in high-turnover tissues. The broader adverse impact of telomere dysfunction across many tissues including more quiescent systems prompted transcriptomic network analyses to identify common mechanisms operative in haematopoietic stem cells, heart and liver. These unbiased studies revealed profound repression of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha and beta (PGC-1α and PGC-1β, also known as Ppargc1a and Ppargc1b, respectively) and the downstream network in mice null for either telomerase reverse transcriptase (Tert) or telomerase RNA component (Terc) genes. Consistent with PGCs as master regulators of mitochondrial physiology and metabolism, telomere dysfunction is associated with impaired mitochondrial biogenesis and function, decreased gluconeogenesis, cardiomyopathy, and increased reactive oxygen species. In the setting of telomere dysfunction, enforced Tert or PGC-1α expression or germline deletion of p53 (also known as Trp53) substantially restores PGC network expression, mitochondrial respiration, cardiac function and gluconeogenesis. We demonstrate that telomere dysfunction activates p53 which in turn binds and represses PGC-1α and PGC-1β promoters, thereby forging a direct link between telomere and mitochondrial biology. We propose that this telomere–p53–PGC axis contributes to organ and metabolic failure and to diminishing organismal fitness in the setting of telomere dysfunction.
PMCID: PMC3741661  PMID: 21307849
15.  Optimal Dynamics for Quality Control in Spatially Distributed Mitochondrial Networks 
PLoS Computational Biology  2013;9(7):e1003108.
Recent imaging studies of mitochondrial dynamics have implicated a cycle of fusion, fission, and autophagy in the quality control of mitochondrial function by selectively increasing the membrane potential of some mitochondria at the expense of the turnover of others. This complex, dynamical system creates spatially distributed networks that are dependent on active transport along cytoskeletal networks and on protein import leading to biogenesis. To study the relative impacts of local interactions between neighboring mitochondria and their reorganization via transport, we have developed a spatiotemporal mathematical model encompassing all of these processes in which we focus on the dynamics of a health parameter meant to mimic the functional state of mitochondria. In agreement with previous models, we show that both autophagy and the generation of membrane potential asymmetry following a fusion/fission cycle are required for maintaining a healthy mitochondrial population. This health maintenance is affected by mitochondrial density and motility primarily through changes in the frequency of fusion events. Health is optimized when the selectivity thresholds for fusion and fission are matched, providing a mechanistic basis for the observed coupling of the two processes through the protein OPA1. We also demonstrate that the discreteness of the components exchanged during fusion is critical for quality control, and that the effects of limiting total amounts of autophagy and biogenesis have distinct consequences on health and population size, respectively. Taken together, our results show that several general principles emerge from the complexity of the quality control cycle that can be used to focus and interpret future experimental studies, and our modeling framework provides a road-map for deconstructing the functional importance of local interactions in communities of cells as well as organelles.
Author Summary
Mitochondria are the powerhouses of eukaryotic cells, oxidizing glucose to produce ATP. Most cells harbor tens to hundreds of mitochondria in a constant state of flux, in which they fuse with one another, undergo fission, import proteins to grow larger, and eventually are recycled by autophagy. These dynamic processes depend on the electrical potential that is maintained across the mitochondrial inner membrane and powers the production of both ATP and detrimental reactive oxygen species. How do mitochondria maintain high membrane potential in the face of damage due to reactive oxygen species? Here, we develop a model to study how the reorganization of mitochondrial networks in space and time due to fusion, fission, and the experimentally observed development of membrane potential asymmetry after fission affect overall mitochondrial health. We show that health, which is a proxy for the mitochondrial membrane potential, is dominated by how density and motility affect the frequency of fusion events, and that several simple rules for the system kinetics lead to optimal quality control. This model predicts general behaviors that can be applied to specific studies of mitochondrial dynamics in a wide variety of cell types, and provides a framework for deconstructing complex organellar organization and their function in human disease.
PMCID: PMC3708874  PMID: 23874166
16.  Glucose Stimulation Induces Dynamic Change of Mitochondrial Morphology to Promote Insulin Secretion in the Insulinoma Cell Line INS-1E 
PLoS ONE  2013;8(4):e60810.
Fission and fusion of mitochondrial tubules are the major processes regulating mitochondrial morphology. However, the physiological significance of mitochondrial shape change is poorly understood. Glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells requires mitochondrial ATP production which evokes Ca2+ influx through plasma membrane depolarization, triggering insulin vesicle exocytosis. Therefore, GSIS reflects mitochondrial function and can be used for evaluating functional changes associated with morphological alterations of mitochondria. Using the insulin-secreting cell line INS-1E, we found that glucose stimulation induced rapid mitochondrial shortening and recovery. Inhibition of mitochondrial fission through expression of the dominant-negative mutant DLP1-K38A eliminated this dynamic mitochondrial shape change and, importantly, blocked GSIS. We found that abolishing mitochondrial morphology change in glucose stimulation increased the mitochondrial inner membrane proton leak, and thus significantly diminished the mitochondrial ATP producing capacity in response to glucose stimulation. These results demonstrate that dynamic change of mitochondrial morphology is a previously unrecognized component for metabolism-secretion coupling of pancreatic β-cells by participating in efficient ATP production in response to elevated glucose levels.
PMCID: PMC3614983  PMID: 23565276
17.  Tom70 Is Essential for PINK1 Import into Mitochondria 
PLoS ONE  2013;8(3):e58435.
PTEN induced kinase 1 (PINK1) is a serine/threonine kinase in the outer membrane of mitochondria (OMM), and known as a responsible gene of Parkinson's disease (PD). The precursor of PINK1 is synthesized in the cytosol and then imported into the mitochondria via the translocase of the OMM (TOM) complex. However, a large part of PINK1 import mechanism remains unclear. In this study, we examined using cell-free system the mechanism by which PINK1 is targeted to and assembled into mitochondria. Surprisingly, the main component of the import channel, Tom40 was not necessary for PINK1 import. Furthermore, we revealed that the import receptor Tom70 is essential for PINK1 import. In addition, we observed that although PINK1 has predicted mitochondrial targeting signal, it was not processed by the mitochondrial processing peptidase. Thus, our results suggest that PINK1 is imported into mitochondria by a unique pathway that is independent of the TOM core complex but crucially depends on the import receptor Tom70.
PMCID: PMC3589387  PMID: 23472196
18.  Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition 
Human Molecular Genetics  2011;21(5):978-990.
Autophagy has emerged as a key cellular process for organellar quality control, yet this pathway apparently fails to eliminate mitochondria containing pathogenic mutations in mitochondrial DNA (mtDNA) in patients with a variety of human diseases. In order to explore how mtDNA-mediated mitochondrial dysfunction interacts with endogenous autophagic pathways, we examined autophagic status in a panel of human cytoplasmic hybrid (cybrid) cell lines carrying a variety of pathogenic mtDNA mutations. We found that both genetic- and chemically induced loss of mitochondrial transmembrane potential (Δψm) caused recruitment of the pro-mitophagic factor Parkin to mitochondria. Strikingly, however, the loss of Δψm alone was insufficient to prompt delivery of mitochondria to the autophagosome (mitophagy). We found that mitophagy could be induced following treatment with the mTORC1 inhibitor rapamycin in cybrids carrying either large-scale partial deletions of mtDNA or complete depletion of mtDNA. Further, we found that the level of endogenous Parkin is a crucial determinant of mitophagy. These results suggest a two-hit model, in which the synergistic induction of both (i) mitochondrial recruitment of Parkin following the loss of Δψm and (ii) mTORC1-controlled general macroautophagy is required for mitophagy. It appears that mitophagy can be accomplished by the endogenous autophagic machinery, but requires the full engagement of both of these pathways.
PMCID: PMC3277306  PMID: 22080835
19.  Anti-telomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer 
Cell  2012;148(4):651-663.
To assess telomerase as a cancer therapeutic target and determine adaptive mechanisms to telomerase inhibition, we modeled telomerase reactivation and subsequent extinction in T-cell lymphomas arising in Atm-/- mice engineered with an inducible telomerase reverse transcriptase allele. Telomerase reactivation in the setting of telomere dysfunction enabled full malignant progression with alleviation of telomere dysfunction-induced checkpoints. These cancers possessed copy number alterations targeting key loci in human T-cell lymphomagenesis. Upon telomerase extinction, tumor growth eventually slowed with re-instatement of telomere dysfunction-induced checkpoints, yet growth subsequently resumed as tumors acquired Alternative Lengthening of Telomeres (ALT) and aberrant transcriptional networks centering on mitochondrial biology and oxidative defense. ALT+ tumors acquired amplification/overexpression of PGC-1β, a master regulator of mitochondrial biogenesis and function, and they showed marked sensitivity to PGC-1β or SOD2 knock-down. Genetic modeling of telomerase extinction reveals vulnerabilities that motivate coincidental inhibition of mitochondrial maintenance and oxidative defense mechanisms to enhance anti-telomerase cancer therapy.
PMCID: PMC3286017  PMID: 22341440
20.  Defective Mitochondrial Morphology and Bioenergetic Function in Mice Lacking the Transcription Factor Yin Yang 1 in Skeletal Muscle 
Molecular and Cellular Biology  2012;32(16):3333-3346.
The formation, distribution, and maintenance of functional mitochondria are achieved through dynamic processes that depend strictly on the transcription of nuclear genes encoding mitochondrial proteins. A large number of these mitochondrial genes contain binding sites for the transcription factor Yin Yang 1 (YY1) in their proximal promoters, but the physiological relevance is unknown. We report here that skeletal-muscle-specific YY1 knockout (YY1mKO) mice have severely defective mitochondrial morphology and oxidative function associated with exercise intolerance, signs of mitochondrial myopathy, and short stature. Gene set enrichment analysis (GSEA) revealed that the top pathways downregulated in YY1mKO mice were assigned to key metabolic and regulatory mitochondrial genes. This analysis was consistent with a profound decrease in the level of mitochondrial proteins and oxidative phosphorylation (OXPHOS) bioenergetic function in these mice. In contrast to the finding for wild-type mice, inactivation of the mammalian target of rapamycin (mTOR) did not suppress mitochondrial genes in YY1mKO mice. Mechanistically, mTOR-dependent phosphorylation of YY1 resulted in a strong interaction between YY1 and the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α), a major regulator of mitochondrial function. These results underscore the important role of YY1 in the maintenance of mitochondrial function and explain how its inactivation might contribute to exercise intolerance and mitochondrial myopathies.
PMCID: PMC3434543  PMID: 22711985
21.  Reconstitution of Mitochondria Derived Vesicle Formation Demonstrates Selective Enrichment of Oxidized Cargo 
PLoS ONE  2012;7(12):e52830.
The mechanisms that ensure the removal of damaged mitochondrial proteins and lipids are critical for the health of the cell, and errors in these pathways are implicated in numerous degenerative diseases. We recently uncovered a new pathway for the selective removal of proteins mediated by mitochondrial derived vesicular carriers (MDVs) that transit to the lysosome. However, it was not determined whether these vesicles were selectively enriched for oxidized, or damaged proteins, and the extent to which the complexes of the electron transport chain and the mtDNA-containing nucloids may have been incorporated. In this study, we have developed a cell-free mitochondrial budding reaction in vitro in order to better dissect the pathway. Our data confirm that MDVs are stimulated upon various forms of mitochondrial stress, and the vesicles incorporated quantitative amounts of cargo, whose identity depended upon the nature of the stress. Under the conditions examined, MDVs did not incorporate complexes I and V, nor were any nucleoids present, demonstrating the specificity of cargo incorporation. Stress-induced MDVs are selectively enriched for oxidized proteins, suggesting that conformational changes induced by oxidation may initiate their incorporation into the vesicles. Ultrastructural analyses of MDVs isolated on sucrose flotation gradients revealed the formation of both single and double membranes vesicles of unique densities and uniform diameter. This work provides a framework for a reductionist approach towards a detailed examination of the mechanisms of MDV formation and cargo incorporation, and supports the emerging concept that MDVs are critical contributors to mitochondrial quality control.
PMCID: PMC3530470  PMID: 23300790
22.  Testosterone Plus Low-Intensity Physical Training in Late Life Improves Functional Performance, Skeletal Muscle Mitochondrial Biogenesis, and Mitochondrial Quality Control in Male Mice 
PLoS ONE  2012;7(12):e51180.
Testosterone supplementation increases muscle mass in older men but has not been shown to consistently improve physical function and activity. It has been hypothesized that physical exercise is required to induce the adaptations necessary for translation of testosterone-induced muscle mass gain into functional improvements. However, the effects of testosterone plus low intensity physical exercise training (T/PT) on functional performance and bioenergetics are unknown. In this pilot study, we tested the hypothesis that combined administration of T/PT would improve functional performance and bioenergetics in male mice late in life more than low-intensity physical training alone. 28-month old male mice were randomized to receive T/PT or vehicle plus physical training (V/PT) for 2 months. Compare to V/PT control, administration of T/PT was associated with improvements in muscle mass, grip strength, spontaneous physical movements, and respiratory activity. These changes were correlated with increased mitochondrial DNA copy number and expression of markers for mitochondrial biogenesis. Mice receiving T/PT also displayed increased expression of key elements for mitochondrial quality control, including markers for mitochondrial fission-and-fusion and mitophagy. Concurrently, mice receiving T/PT also displayed increased expression of markers for reduced tissue oxidative damage and improved muscle quality. Conclusion: Testosterone administered with low-intensity physical training improves grip strength, spontaneous movements, and respiratory activity. These functional improvements were associated with increased muscle mitochondrial biogenesis and improved mitochondrial quality control.
PMCID: PMC3519841  PMID: 23240002
23.  β-Cell Uncoupling Protein 2 Regulates Reactive Oxygen Species Production, Which Influences Both Insulin and Glucagon Secretion 
Diabetes  2011;60(11):2710-2719.
The role of uncoupling protein 2 (UCP2) in pancreatic β-cells is highly debated, partly because of the broad tissue distribution of UCP2 and thus limitations of whole-body UCP2 knockout mouse models. To investigate the function of UCP2 in the β-cell, β-cell–specific UCP2 knockout mice (UCP2BKO) were generated and characterized.
UCP2BKO mice were generated by crossing loxUCP2 mice with mice expressing rat insulin promoter-driven Cre recombinase. Several in vitro and in vivo parameters were measured, including respiration rate, mitochondrial membrane potential, islet ATP content, reactive oxygen species (ROS) levels, glucose-stimulated insulin secretion (GSIS), glucagon secretion, glucose and insulin tolerance, and plasma hormone levels.
UCP2BKO β-cells displayed mildly increased glucose-induced mitochondrial membrane hyperpolarization but unchanged rates of uncoupled respiration and islet ATP content. UCP2BKO islets had elevated intracellular ROS levels that associated with enhanced GSIS. Surprisingly, UCP2BKO mice were glucose-intolerant, showing greater α-cell area, higher islet glucagon content, and aberrant ROS-dependent glucagon secretion under high glucose conditions.
Using a novel β-cell–specific UCP2KO mouse model, we have shed light on UCP2 function in primary β-cells. UCP2 does not behave as a classical metabolic uncoupler in the β-cell, but has a more prominent role in the regulation of intracellular ROS levels that contribute to GSIS amplification. In addition, β-cell UCP2 contributes to the regulation of intraislet ROS signals that mediate changes in α-cell morphology and glucagon secretion.
PMCID: PMC3198081  PMID: 21984579
24.  Rapid Detection of an ABT-737-Sensitive Primed for Death State in Cells Using Microplate-Based Respirometry 
PLoS ONE  2012;7(8):e42487.
Cells that exhibit an absolute dependence on the anti-apoptotic BCL-2 protein for survival are termed “primed for death” and are killed by the BCL-2 antagonist ABT-737. Many cancers exhibit a primed phenotype, including some that are resistant to conventional chemotherapy due to high BCL-2 expression. We show here that 1) stable BCL-2 overexpression alone can induce a primed for death state and 2) that an ABT-737-induced loss of functional cytochrome c from the electron transport chain causes a reduction in maximal respiration that is readily detectable by microplate-based respirometry. Stable BCL-2 overexpression sensitized non-tumorigenic MCF10A mammary epithelial cells to ABT-737-induced caspase-dependent apoptosis. Mitochondria within permeabilized BCL-2 overexpressing cells were selectively vulnerable to ABT-737-induced cytochrome c release compared to those from control-transfected cells, consistent with a primed state. ABT-737 treatment caused a dose-dependent impairment of maximal O2 consumption in MCF10A BCL-2 overexpressing cells but not in control-transfected cells or in immortalized mouse embryonic fibroblasts lacking both BAX and BAK. This impairment was rescued by delivering exogenous cytochrome c to mitochondria via saponin-mediated plasma membrane permeabilization. An ABT-737-induced reduction in maximal O2 consumption was also detectable in SP53, JeKo-1, and WEHI-231 B-cell lymphoma cell lines, with sensitivity correlating with BCL-2:MCL-1 ratio and with susceptibility (SP53 and JeKo-1) or resistance (WEHI-231) to ABT-737-induced apoptosis. Multiplexing respirometry assays to ELISA-based determination of cytochrome c redistribution confirmed that respiratory inhibition was associated with cytochrome c release. In summary, cell-based respiration assays were able to rapidly identify a primed for death state in cells with either artificially overexpressed or high endogenous BCL-2. Rapid detection of a primed for death state in individual cancers by “bioenergetics-based profiling” may eventually help identify the subset of patients with chemoresistant but primed tumors who can benefit from treatment that incorporates a BCL-2 antagonist.
PMCID: PMC3411749  PMID: 22880001
25.  Altered Mitochondrial Dynamics Contributes to Endothelial Dysfunction in Diabetes Mellitus 
Circulation  2011;124(4):444-453.
Endothelial dysfunction contributes to the development of atherosclerosis in patients with diabetes mellitus, but the mechanisms of endothelial dysfunction in this setting are incompletely understood. Recent studies have shown altered mitochondrial dynamics in diabetes mellitus with increased mitochondrial fission and production of reactive oxygen species (ROS). We investigated the contribution of altered dynamics to endothelial dysfunction in diabetes.
Methods and Results
We observed mitochondrial fragmentation (P=0.002) and increased expression of fission-1 protein (Fis1, P<0.0001) in venous endothelial cells freshly isolated from patients with diabetes mellitus (n=10) compared to healthy controls (n=9). In cultured human aortic endothelial cells exposed to 30 mM glucose, we observed a similar loss of mitochondrial networks and increased expression of Fis1 and dynamin-related protein-1 (Drp1), proteins required for mitochondrial fission. Altered mitochondrial dynamics was associated with increased mitochondrial ROS production and a marked impairment of agonist-stimulated activation of endothelial nitric oxide synthase (eNOS) and cGMP production. Silencing Fis1 or DRP1 expression with siRNA blunted high glucose-induced alterations in mitochondrial networks, ROS production, eNOS activation, and cGMP production. An intracellular ROS scavenger provided no additional benefit, suggesting that increased mitochondrial fission may impair endothelial function via increased ROS.
These findings implicate increased mitochondrial fission as a contributing mechanism for endothelial dysfunction in diabetic states.
PMCID: PMC3149100  PMID: 21747057
endothelium; mitochondria; mitochondrial dynamics; reactive oxygen species

Results 1-25 (59)