Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Volume transmission signalling via astrocytes 
The influence of astrocytes on synaptic function has been increasingly studied, owing to the discovery of both gliotransmission and morphological ensheathment of synapses. While astrocytes exhibit at best modest membrane potential fluctuations, activation of G-protein coupled receptors (GPCRs) leads to a prominent elevation of intracellular calcium which has been reported to correlate with gliotransmission. In this review, the possible role of astrocytic GPCR activation is discussed as a trigger to promote synaptic plasticity, by affecting synaptic receptors through gliotransmitters. Moreover, we suggest that volume transmission of neuromodulators could be a biological mechanism to activate astrocytic GPCRs and thereby to switch synaptic networks to the plastic mode during states of attention in cerebral cortical structures.
PMCID: PMC4173289  PMID: 25225097
acetylcholine; Gq signalling; IP3 receptors; d-serine; gamma oscillations
2.  Size and Receptor Density of Glutamatergic Synapses: A Viewpoint from Left–Right Asymmetry of CA3–CA1 Connections 
Synaptic plasticity is considered to be the main mechanism for learning and memory. Excitatory synapses in the cerebral cortex and hippocampus undergo plastic changes during development and in response to electric stimulation. It is widely accepted that this process is mediated by insertion and elimination of various glutamate receptors. In a series of recent investigations on left–right asymmetry of hippocampal CA3–CA1 synapses, glutamate receptor subunits have been found to have distinctive expression patterns that depend on the postsynaptic density (PSD) area. Particularly notable are the GluR1 AMPA receptor subunit and NR2B NMDA receptor subunit, where receptor density has either a supralinear (GluR1 AMPA) or inverse (NR2B NMDAR) relationship to the PSD area. We review current understanding of structural and physiological synaptic plasticity and propose a scheme to classify receptor subtypes by their expression pattern with respect to PSD area.
PMCID: PMC2706655  PMID: 19587849
spines; glutamate; AMPAR; NMDAR; mGluR5; PSD
3.  Experience enhances gamma oscillations and interhemispheric asymmetry in the hippocampus 
Nature Communications  2013;4:1652-.
Gamma oscillations are implicated in higher-order brain functions such as cognition and memory, but how an animal’s experience organizes these gamma activities remains elusive. Here we show that the power of hippocampal theta-associated gamma oscillations recorded during urethane anesthesia tends to be greater in rats reared in an enriched environment than those reared in an isolated condition. This experience-dependent gamma enhancement is consistently larger in the right hippocampus across subjects, coinciding with a lateralized increase of synaptic density in the right hippocampus. Moreover, interhemispheric coherence in the enriched environment group is significantly elevated at the gamma frequency. These results suggest that enriched rearing sculpts the functional left–right asymmetry of hippocampal circuits by reorganization of synapses.
Gamma oscillations act to synchronize neuronal activity and are implicated in cognitive processing. Using in vivo electrophysiology, Shinohara et al. find that gamma oscillations and associated structural changes are greater in right-sided hippocampi of enriched environment-reared rats.
PMCID: PMC3644069  PMID: 23552067

Results 1-3 (3)