PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (31)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Impact of Several Types of Stresses on Short-term Memory and Apoptosis in the Hippocampus of Rats 
Purpose
Stress has a deteriorating effect on hippocampal function. It also contributes to symptom exacerbation in many disease states, including overactive bladder and interstitial cystitis/bladder pain syndrome. We investigated the effects of various types of stresses (restraint, noise, and cold) on short-term memory and apoptosis in relation with corticotropin-releasing factor (CRF) expression.
Methods
Rats in the restraint stress group were restrained in a transparent Plexiglas cylinder for 60 minutes twice daily. Rats in the noise stress group were exposed to the 120 dB supersonic machine sound for 60 minutes twice daily. Rats in the cold stress group were placed in a cold chamber at 4℃ for 60 minutes twice daily. Each stress was applied for 10 days. A step-down avoidance test for short-term memory, immunohistochemistry for caspase-3 expression, and western blot analysis for Bax and Bcl-2 expressions were conducted.
Results
Latency time was decreased and CRF expression in the hippocampal dentate gyrus and hypothalamic paraventricular nucleus were increased in all of the stress groups. The number of caspase-3-positive cells in the hippocampal dentate gyrus was increased and the expressions of Bax and Bcl2 in the hippocampus were decreased in all of the stress groups.
Conclusions
All of the stress groups experienced short-term memory impairment induced by apoptosis in the hippocampus. The present results suggest the possibility that these stresses affecting the impairment of short-term memory may also induce functional lower urinary tract disorders.
doi:10.5213/inj.2013.17.3.114
PMCID: PMC3797890  PMID: 24143289
Restrain stress; Noise stress; Cold stress; Short-term memory; Apoptosis
2.  Neuroprotective effects of bovine colostrum on intracerebral hemorrhage-induced apoptotic neuronal cell death in rats☆ 
Neural Regeneration Research  2012;7(22):1715-1721.
Brain cell death after intracerebral hemorrhage may be mediated in part by an apoptotic mechanism. Colostrum is the first milk produced by mammals for their young. It plays an important role in protection and development by providing various antibodies, growth factors and nutrients, and has been used for various diseases in many countries. In the present study, we investigated the anti-apoptotic effects of bovine colostrum using organotypic hippocampal slice cultures and an intracerebral hemorrhage animal model. We performed densitometric measurements of propidium iodide uptake, a step-down avoidance task, Nissl staining, and caspase-3 immunohistochemistry. The present results revealed that colostrum treatment significantly suppressed N-methyl-D-aspartic acid-induced neuronal cell death in the rat hippocampus. Moreover, colostrum treatment improved short-term memory by suppressing hemorrhage-induced apoptotic neuronal cell death and decreasing the volume of the lesion induced by intracerebral hemorrhage in the rat hippocampus. These results suggest that colostrum may have a beneficial role in recovering brain function following hemorrhagic stroke by suppressing apoptotic cell death.
doi:10.3969/j.issn.1673-5374.2012.22.006
PMCID: PMC4302452  PMID: 25624793
intracerebral hemorrhage; organotypic hippocampal slice culture; bovine colostrum; apoptotic cell death; N-methyl-D-aspartic acid; caspase-3; hippocampus; memory
3.  Treadmill exercise alleviates chronic mild stress-induced depression in rats 
Depression is a major cause of disability and one of the most common public health problems. In the present study, antidepressive effect of treadmill exercise on chronic mild stress (CMS)-induced depression in rats was investigated. For this, sucrose intake test, immunohistochemistry for 5-bromo-2′-deoxyuridine, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, and Western blot analysis for brain-derived neurotrophic factor, cyclic adenosine monophosphate response element binding protein, and endothelial nitric oxide synthase were conducted. Following adaptation to the animal vivarium and two baseline fluid intake tests, the animals were divided into four groups: the control group, the CMS-induced depression group, the CMS-induced depression and exercise group, and the CMS-induced depression and fluoxetine-treated group. The animals in the CMS groups were exposed to the CMS conditions for 8 weeks and those in the control group were exposed to the control conditions for 8 weeks. After 4 weeks of CMS, the rats in the CMS-induced depression and exercise group were made to run on a motorized treadmill for 30 min once a day for 4 weeks. In the present results, treadmill exercise alleviated CMS-induced depressive symptoms. Treadmill exercise restored sucrose consumption, increased cell proliferation, and decreased apoptotic cell death. The present results suggest the possibility that exercise may improve symptoms of depression.
doi:10.12965/jer.150265
PMCID: PMC4697778  PMID: 26730380
Depression; Treadmill exercise; Chronic mild stress; Fluoxe-tine
4.  Alpha1-Adrenoceptor Antagonists Improve Memory by Activating N-methyl-D-Aspartate-Induced Ion Currents in the Rat Hippocampus 
Purpose:
Alpha1 (α1)-adrenoceptor antagonists are widely used to treat lower urinary tract symptoms. These drugs not only act on peripheral tissues, but also cross the blood-brain barrier and affect the central nervous system. Therefore, α1-adrenoceptor antagonists may enhance brain functions. In the present study, we investigated the effects of tamsulosin, an α1-adrenoceptor antagonist, on short-term memory, as well as spatial learning and memory, in rats.
Methods:
The step-down avoidance test was used to evaluate short-term memory, and an eight-arm radial maze test was used to evaluate spatial learning and memory. TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling) staining was performed in order to evaluate the effect of tamsulosin on apoptosis in the hippocampal dentate gyrus. Patch clamp recordings were used to evaluate the effect of tamsulosin on ionotropic glutamate receptors, such as N-methyl-D-aspartate (NMDA), amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and kainate receptors, in hippocampal CA1 neurons.
Results:
Tamsulosin treatment improved short-term memory, as well as spatial learning and memory, without altering apoptosis. The amplitudes of NMDA-induced ion currents were dose-dependently increased by tamsulosin. However, the amplitudes of AMPA- and kainate-induced ion currents were not affected by tamsulosin.
Conclusions:
Tamsulosin enhanced memory function by activating NMDA receptor-mediated ion currents in the hippocampus without initiating apoptosis. The present study suggests the possibility of using tamsulosin to enhance memory under normal conditions, in addition to its use in treating overactive bladder.
doi:10.5213/inj.2015.19.4.228
PMCID: PMC4703930  PMID: 26739177
Tamsulosin; Memory; Apoptosis; Patch-Clamp Techniques; Receptors, N-methyl-D-aspartate
5.  Treadmill exercise enhances spatial learning ability through suppressing hippocampal apoptosis in Huntington’s disease rats 
Huntington’s disease is a chronic neurodegenerative disorder inherited in an autosomal dominant fashion, and characterized as involuntary movement. Quinolinic acid has been used to produce an animal model of Huntington’s disease. In the present study, the effect of treadmill exercise on spatial-learning ability and motor coordination focusing on the apoptosis in the hippocampus was investigated using quinolinic acid-induced Huntington’s disease rats. Huntington’s disease was induced by unilateral intrastriatal injection of quinolinic acid (2 μL of 100 nmol) using stereotaxic instrument. The rats in the treadmill exercise groups were subjected to run on a treadmill for 30 min once a day during 14 days. Spatial learning ability and motor coordination were determined by radial 8-arm maze test and rota-rod test. Immunohistochemistry for caspase-3 and western blot for Bax and Bcl-2 were also conducted for the detection of apoptosis. In the present results, spatial learning ability and motor coordination were deteriorated by intrastriatal injection of quinolinic acid. In contrast, treadmill exercise exerted ameliorating effect on quinolinic acid-induced deterioration of spatial learning ability and motor coordination. Bcl-2 expression in the hippocampus was de-creased and expressions of casepase-3 and Bax in the hippocampus were increased in the quinolinic acid-induced Huntington’s disease rats. Treadmill exercise increased Bcl-2 expression and decreased expressions of casepase-3 and Bax in the Huntington’s disease rats. The present results showed that treadmill exercise might ameliorate quinolinic acid-induced loss of spatial learning ability and motor coordination by suppressing apoptosis in the hippocampus.
doi:10.12965/jer.150212
PMCID: PMC4492422  PMID: 26171378
Huntington’s disease; Quinolinic acid; Treadmill exercise; Spatial learning ability; Motor coordination; Apoptosis
6.  Treadmill exercise prevents GABAergic neuronal loss with suppression of neuronal activation in the pilocarpine-induced epileptic rats 
Epilepsy is a common neurological disorder characterized by seizure and loss of neuronal cells by abnormal rhythmic firing of neurons in the brain. In the present study, we investigated the effect of treadmill exercise on gamma-aminobutyric acid (GABA)ergic neuronal loss in relation with neuronal activation using pilocarpine-induced epileptic rats. The rats were divided into four groups: control group, control and treadmill exercise group, pilocarpine-induced epilepsy group, and pilocarpine-induced epilepsy and treadmill exercise group. Epilepsy was induced by intraperitoneal injection of 320 mg/kg pilocarpine hydrochloride. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 2 weeks. In the present results, neuronal loss in the hippocampal CA1 region was increased after pilocarpine-induced seizure. Treadmill exercise inhibited hippocampal neuronal loss in the epileptic rats. Glutamic acid decarboxylase (GAD67) expression in the hippocampal CA1 region was reduced by pilocarpine-induced seizure. Treadmill exercise increased GAD67 expression in the epileptic rats. c-Fos expression in the hippocampal CA1 region was increased in response to epileptic seizure. Treadmill exercise inhibited c-Fos expression in the epileptic rats. Epileptic seizure increased brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB) expressions in the hippocampus. Treadmill exercise suppressed BDNF and TrkB expressions in the epileptic rats. In the present study, treadmill exercise prevented GABAergic neuronal loss and inhibited neuronal activation in the hippocampal CA1 region through the down-regulation of BDNF-TrkB signaling pathway.
doi:10.12965/jer.150193
PMCID: PMC4415754  PMID: 25960980
Epilepsy; Treadmill exercise; Glutamic acid decarboxylase; c-Fos; Brain-derived neurotrophic factor; Tyrosine kinase receptor B
7.  Betaine inhibits vascularization via suppression of Akt in the retinas of streptozotocin-induced hyperglycemic rats 
Molecular Medicine Reports  2015;12(2):1639-1644.
Diabetic retinopathy is a severe microvascular complication amongst patients with diabetes, and is the primary cause of visual loss through neovascularization. Betaine is one of the components of Fructus Lycii. In the present study, the effects of betaine on the expression levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF)-1α in association with the Akt pathway were investigated in the retinas of streptozotocin (STZ)-induced diabetic rats using western blot and immunohistochemical analyses. The results of the present study revealed that the expression levels of VEGF, HIF-1α, and Akt were increased in the retinas of the STZ-induced diabetic rats. Betaine treatment attenuated this increase in VEGF and HIF-1α expression via suppression of diabetes-induced Akt activation in the retinas of the diabetic rats. The results suggested that betaine may potentially be used to delay the onset of complications associated with diabetic retinopathy via inhibition of retinal neovascularization in patients with diabetes.
doi:10.3892/mmr.2015.3613
PMCID: PMC4464397  PMID: 25891515
betaine; streptozotocin; diabetic rats; vascular endothelial growth factor; hypoxia-inducible factor-1α; Akt
8.  Ulinastatin inhibits cerebral ischemia-induced apoptosis in the hippocampus of gerbils 
Molecular Medicine Reports  2015;12(2):1796-1802.
Ulinastatin is a urinary trypsin inhibitor, originally extracted and purified from human urine. Ulinastatin has cytoprotective effects against ischemic injury in several organs. In the present study, the neuroprotective effects of ulinastatin following ischemic cerebral injury in the hippocampus of gerbils was investigated. To induce transient global ischemia in gerbils, the common carotid arteries were occluded using aneurysm clips for 5 min, and the clips were then removed. Ulinastatin was subcutaneously injected into the gerbils once a day for 7 days at doses of 50,000 or 100,000 U/kg. The gerbils were confronted with a step-down avoidance task, following which tissue samples from the gerbils were examined using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, western blot analysis for B-cell lymphoma (Bcl-2) and Bcl-2-associated X protein (Bax), immunohistochemistry for caspase-3 and immunofluorescence for 5-bromo-2′-deoxyuridine. The numbers of TUNEL-positive and caspase-3-positive cells in the hippocampal CA1 region increased following cerebral ischemia. The expression of Bax in the hippocampus increased, while the expression of Bcl-2 in the hippocampus decreased following cerebral ischemia. These results confirmed that apoptosis in the hippocampus was enhanced following cerebral ischemia in gerbils. The levels of cell proliferation in the hippocampal dentate gyrus were also enhanced by ischemia, which is possibly an adaptive mechanism to compensate for excessive levels of apoptosis. Ulinastatin treatment inhibited ischemia-induced apoptosis by suppressing apoptosis-associated molecules, and thus ameliorated ischemia-induced short-term memory impairment. The cell proliferation in the hippocampus was also suppressed following ulinastatin treatment. These results suggested the use of ulinastatin as a therapeutic agent for patients with cerebral stroke.
doi:10.3892/mmr.2015.3612
PMCID: PMC4464423  PMID: 25891426
ulinastatin; transient global ischemia; apoptotic cell death; cell proliferation; hippocampus; short-term memory
9.  Aerobic Exercise Alleviates Ischemia-Induced Memory Impairment by Enhancing Cell Proliferation and Suppressing Neuronal Apoptosis in Hippocampus 
Purpose
Neurogenic lower urinary tract dysfunction (NLUTD) is a possible consequence of several neurological disorders. NLUTD may produce debilitating symptoms and serious complications, such as chronic renal failure, and recurrent urinary tract infections. Many animal studies of NLUTD symptoms have focused on animal models of cerebral ischemia. In the present study, we investigated the effects of treadmill exercise on memory function and its relation to cell proliferation and apoptosis in the hippocampus, following transient global ischemia in gerbils.
Methods
To induce transient global ischemia in gerbil, both common carotid arteries were occluded for 5 minutes. Gerbils in the exercise groups were forced to run on a treadmill exercise for 30 minutes once a day for 2 weeks. Step-down avoidance task and Y maze task were performed. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-staining, immunohistochemistry for 5-bromo-2'-deoxyridine, doublecortin, caspase-3, and Western blot for brain-derived neurotrophic factor (BDNF), Bax, Bcl-2, cytochrome c, caspase-3 were conducted.
Results
Ischemia caused memory impairment with an increase of cell proliferation, BDNF expression, and apoptosis in the hippocampus. Treadmill exercise improved memory function with further increase of cell proliferation and BDNF expression and a decrease of apoptosis.
Conclusions
The animal model that we have developed and our assessment of the relation between exercise and brain function can be useful tools for future investigations of NLUTD symptoms associated with stroke, particularly ischemic stroke. The present study suggests that treadmill exercise promoted the recovery of brain function after cerebral ischemia.
doi:10.5213/inj.2014.18.4.187
PMCID: PMC4280438  PMID: 25562035
Ischemia; Cell Proliferation; Brain-Derived Neurotrophic Factor; Apoptosis; Exercise Test
10.  Treadmill exercise improves motor coordination through ameliorating Purkinje cell loss in amyloid beta23-35-induced Alzheimer’s disease rats 
Alzheimer’s disease (AD) is a most common age-related neurodegenerative disease. AD is characterized by a progressive loss of neurons causing cognitive dysfunction. The cerebellum is closely associated with integration of movement, including motor coordination, control, and equilibrium. In the present study, we evaluated the effect of tread-mill exercise on the survival of Purkinje neurons in relation with reactive astrocyte in the cerebellum using Aβ25–35–induced AD rats. AD was induced by a bilateral intracerebroventricular (ICV) injection of Aβ25–35. The rats in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 4 weeks, starting 2 days after Aβ25–35 injection. In the present results, ICV injection of Aβ25–35 deteriorated motor coordination and balance. The number of calbindin-positive cells in the cerebellar vermis was decreased and glial fibrillary acidic protein (GFAP) expression in the cerebellar vermis was increased in the Aβ25–35-induced AD rats. Treadmill exercise improved motor coordination and balance. Treadmill exercise increased the number of Purkinje neurons and suppressed GFAP expression in the cerebellar vermis. The present study demonstrated that treadmill exercises alleviated dysfunction of motor coordination and balance by reduction of Purkinje cell loss through suppressing reactive astrocytes in the cerebellum of AD rats. The present study provides the possibility that treadmill exercise might be an important therapeutic strategy for the symptom improvement of AD patients.
doi:10.12965/jer.140163
PMCID: PMC4237839  PMID: 25426461
Alzheimer’s disease; Treadmill exercise; Cerebellum; Motor coordination and balance; Purkinje neurons; Reactive astrocytes
11.  Inhibitory Effects of Isoquinoline Alkaloid Berberine on Ischemia-Induced Apoptosis via Activation of Phosphoinositide 3-Kinase/Protein Kinase B Signaling Pathway 
Purpose
Berberine is a type of isoquinoline alkaloid that has been used to treat various diseases. A neuroprotective effect of berberine against cerebral ischemia has been reported; however, the effects of berberine on apoptosis in relation to reactive astrogliosis and microglia activation under ischemic conditions have not yet been fully evaluated. In the present study, we investigated the effects of berberine on global ischemia-induced apoptosis, and focused on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway in the hippocampus using gerbils.
Methods
Gerbils received berberine orally once a day for 14 consecutive days, starting one day after surgery. In this study, a step-down avoidance task was used to assess short-term memory. Furthermore, we employed the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay to evaluate DNA fragmentation, immunohistochemistry to investigate glial fibriallary acidic protein, CD11b, and caspase-3, and western blot to assess PI3K, Akt, Bax, Bcl-2, and cytochrome c.
Results
Our results revealed that berberine treatment alleviated ischemia-induced short-term memory impairment. Treatment with berbeine also attenuated ischemia-induced apoptosis and inhibited reactive astrogliosis and microglia activation. Furthermore, berberine enhanced phospho-PI3K and phospho-Akt expression in the hippocampus of ischemic gerbils.
Conclusions
Berberine exerted a neuroprotective effect against ischemic insult by inhibiting neuronal apoptosis via activation of the PI3K/Akt signaling pathway. The antiapoptotic effect of berberine was achieved through inhibition of reactive astrogliosis and microglia activation. Berberine may therefore serve as a therapeutic agent for stroke-induced neurourological problems.
doi:10.5213/inj.2014.18.3.115
PMCID: PMC4180161  PMID: 25279238
Berberine; Brain ischemia; Short-term memory; Apoptosis; Phosphatidylinositol 3-kinases
12.  Postnatal treadmill exercise alleviates short-term memory impairment by enhancing cell proliferation and suppressing apoptosis in the hippocampus of rat pups born to diabetic rats 
During pregnancy, diabetes mellitus exerts detrimental effects on the development of the fetus, especially the central nervous system. In the current study, we evaluated the effects of postnatal treadmill exercise on short-term memory in relation with cell proliferation and apoptosis in the hippocampus of rat pups born to streptozotocin (STZ)-induced diabetic maternal rats. Adult female rats were mated with male rats for 24 h. Two weeks after mating, the pregnant female rats were divided into two groups: control group and STZ injection group. The pregnant rats in the STZ injection group were administered 40 mg/kg of STZ intraperitoneally. After birth, the rat pups were divided into the following four groups: control group, control with postnatal exercise group, maternal STZ-injection group, and maternal STZ-injection with postnatal exercise group. The rat pups in the postnatal exercise groups were made to run on a treadmill for 30 min once a day, 5 times per week for 2 weeks beginning 4 weeks after birth. The rat pups born to diabetic rats were shown to have short-term memory impairment with suppressed cell proliferation and increased apoptosis in the hippocampal dentate gyrus. Postnatal treadmill exercise alleviated short-term memory impairment by increased cell proliferation and suppressed apoptosis in the rat pups born to diabetic rats. These findings indicate that postnatal treadmill exercise may be used as a valuable strategy to ameliorate neurodevelopmental problems in children born to diabetics.
doi:10.12965/jer.140145
PMCID: PMC4157927  PMID: 25210695
Diabetic rats; Treadmill exercise; Cell proliferation; Apoptosis; Rat pups; Hippocampal dentate gyrus
13.  Treadmill exercise ameliorates disturbance of spatial learning ability in scopolamine-induced amnesia rats 
Alzheimer’s disease is the most common neurodegenerative disease and this disease induces progressive loss of memory function Scopolamine is a non-selective muscarinic cholinergic receptor antagonist and it induces impairment of learning ability. Exercise is known to ameliorate memory deficits induced by various brain diseases. In the present study, we investigated the effect of treadmill exercise on spatial learning ability in relation with cell proliferation in the hippocampus using the scopolamine-induced amnesia mice. For the induction of amnesia, 1 mg/kg scopolamine hydrobromide was administered intraperitoneally once a day for 14 days. Morris water maze test for spatial learning ability was conducted. Immonofluorescence for 5-bromo-2-deoxyuri-dine (BrdU) and western blot for brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase B (TrkB) were performed. In the present results, scopolamine-induced amnesia mice showed deterioration of spatial learning ability. Inhibition of cell proliferation and suppression of BDNF and TrkB expressions were observed in the scopolamine-induced amnesia mice. Treadmill exercise improved spatial learning ability and increased cell proliferation through activating of BDNF-TrkB pathway in the amnesia mice. These findings offer a possibility that treadmill exercise may provide preventive or therapeutic value for the memory loss induced by variable neurodegenerative diseases including Alzheimer’s disease.
doi:10.12965/jer.140110
PMCID: PMC4106769  PMID: 25061594
Scopolamine; Amnesia; Treadmill exercise; Cell proliferation; Spatial learning ability; Brain-derived neurotrophic factor
14.  Oral mucosa stem cells alleviates spinal cord injury-induced neurogenic bladder symptoms in rats 
Background
Spinal cord injury (SCI) deteriorates various physical functions, in particular, bladder problems occur as a result of damage to the spinal cord. Stem cell therapy for SCI has been focused as the new strategy to treat the injuries and to restore the lost functions. The oral mucosa cells are considered as the stem cells-like progenitor cells. In the present study, we investigated the effects of oral mucosa stem cells on the SCI-induced neurogenic bladder in relation with apoptotic neuronal cell death and cell proliferation.
Results
The contraction pressure and the contraction time in the urinary bladder were increased after induction of SCI, in contrast, transplantation of the oral mucosa stem cells decreased the contraction pressure and the contraction time in the SCI-induced rats. Induction of SCI initiated apoptosis in the spinal cord tissues, whereas treatment with the oral mucosa stem cells suppressed the SCI-induced apoptosis. Disrupted spinal cord by SCI was improved by transplantation of the oral mucosa stem cells, and new tissues were increased around the damaged tissues. In addition, transplantation of the oral mucosa stem cells suppressed SCI-induced neuronal activation in the voiding centers.
Conclusions
Transplantation of oral mucosa stem cells ameliorates the SCI-induced neurogenic bladder symptoms by inhibiting apoptosis and by enhancing cell proliferation. As the results, SCI-induced neuronal activation in the neuronal voiding centers was suppressed, showing the normalization of voiding function.
doi:10.1186/1423-0127-21-43
PMCID: PMC4028106  PMID: 24884998
Spinal cord injury; Oral mucosa stem cells; Cystometry; Apoptosis; Nerve growth factor; c-Fos
15.  Swimming exercise ameliorates multiple sclerosis-induced impairment of short-term memory by suppressing apoptosis in the hippocampus of rats 
Multiple sclerosis is one of the autoimmune diseases in the central nervous system. Multiple sclerosis occurs through multiple mechanisms, and it is also mediated in part by an apoptotic mechanism. Swimming exercise has been recommended for the prevention and treatment of chronic diseases. In the present study, we investigated the effects of swimming exercise on short-term memory in relation with apoptotic neuronal cell death in the hippocampus following induction of multiple sclerosis. For this study, step-down avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, immunohistochemistry for caspase-3 were performed. The animal model of multiple sclerosis was made by bilateral intracerebral ventricle injection of ethidium bromide. The rats in the swimming exercise groups were forced to swim for 30 min once daily for 14 consecutive days, starting 3 days after induction of multiple sclerosis. In the present results, short-term memory was deteriorated in the multiple sclerosis-induced rats. The number of TUNEL-positive and caspase-3-positive cells in the hippocampal dentate gyrus was increased in the multiple sclerosis-induced rats. Swimming exercise alleviated multiple sclerosis-induced short-term memory impairment by suppressing apoptotic neuronal cell death in the hippocampus. These effects of swimming exercise may aid symptom relief in the incurable neurodegenerative diseases.
doi:10.12965/jer.140103
PMCID: PMC4025552  PMID: 24877040
Multiple sclerosis; Swimming; Apoptotic neuronal cell death; Short-term memory
16.  Treadmill Exercise Ameliorates Short-Term Memory Disturbance in Scopolamine-Induced Amnesia Rats 
Purpose
Scopolamine is a nonselective muscarinic cholinergic receptor antagonist, which induces impairment of learning ability and memory function. Exercise is known to ameliorate brain disturbance induced by brain injuries. In the present study, we investigated the effect of treadmill exercise on short-term memory in relation to acetylcholinesterase (AChE) expression in the hippocampus, using a scopolamine-induced amnesia model in mice.
Methods
To induce amnesia, 1 mg/kg scopolamine hydrobromide was administered intraperitoneally once per day for 14 days. A step-down avoidance test for short-term memory was conducted. AChE histochemistry, immunohistochemistry for collagen IV, and doublecortin were performed.
Results
Short-term memory deteriorated in the mice with scopolamine-induced amnesia, concomitant with enhanced AChE expression and suppression of angiogenesis in the hippocampus. Critically, treadmill exercise ameliorated short-term memory impairment, suppressed AChE expression, and enhanced angiogenesis in the mice with scopolamine-induced amnesia.
Conclusions
Overexpression of AChE is implicated in both brain and renal disease. The findings of our study indicate that treadmill exercise may be of therapeutic value in neurodegenerative and renal diseases by suppressing the effects of AChE expression.
doi:10.5213/inj.2014.18.1.16
PMCID: PMC3983504  PMID: 24729923
Amnesia; Exercise test; Short-term memory; Acetylcholinesterase
17.  Treadmill exercise improves short-term memory by enhancing neurogenesis in amyloid beta-induced Alzheimer disease rats 
Alzheimer’s disease is one of the most devastating neurodegenerative disorders, and this disease is characterized by severe memory impairment and decline of cognition. Hippocampal neurons are vulnerable to injury induced by Alzheimer’s disease. Physical exercise is known to promote cell survival and functional recovery after brain injuries. In the present study, we investigated the effects of treadmill exercise on short-term memory in relation with neurogenesis in the rats with amyloid β25–35 (Aβ25–35)-induced Alzheimer’s disease. The rat model of Alzheimer’s disease was induced by the intracerebroventricular (ICV) injection of Aβ25–35, using a stereotaxic instrument. The rats in the exercise group were forced to run on a treadmill for 30 min once daily for 4 consecutive weeks, starting 2 days after Aβ25–35 injection. Presently, short-term memory was deteriorated and apical dendritic length in the hippocampus was shortened in the hippocampus by Aβ25–35 injection. In contrast, treadmill exercise alleviated memory impairment and increased apical dendritic length in the Aβ25–35-injected rats. Neurogenesis and brain-derived neurotorphic factor (BDNF) and tyrosine kinase B (trkB) in the hippocampal dentate gyrus were decreased by Aβ25–35 injection. Treadmill exercise increased neurogenesis and expressions of BDNF and trkB expressions. The present study shows that treadmill exercise may provide therapeutic value for the alleviating symptoms of Alzheimer’s disease.
doi:10.12965/jer.140086
PMCID: PMC3952831  PMID: 24678498
Alzheimer’s disease; Treadmill exercise; Short-term memory; Neurogenesis; Apical dendritic length
18.  Effects of endurance exercise on expressions of glial fibrillary acidic protein and myelin basic protein in developing rats with maternal infection-induced cerebral palsy 
Periventricular leukomalacia (PVL) is a common white matter lesion affecting the neonatal brain. PVL is closely associated with cerebral palsy (CP) and characterized by increase in the number of astrocytes, which can be detected by positivity for glial fibrillary acidic protein (GFAP). Change in myelin basic protein (MBP) is an early sign of white matter abnormality. Maternal or placental infection can damage the neonatal brain. In the present study, we investigated the effects of treadmill walking exercise on GFAP and MBP expressions in rats with maternal lipopolysaccharide (LPS)-induced PVL. Immunohistochemistry was performed for the detection of GFAP and MBP. The present results showed that intracervical maternal LPS injection during pregnancy increased GFAP expression in the striatum and decreased MBP expression in the corpus callosum of rats. The results also showed that treadmill walking exercise suppressed GFAP expression and enhanced MBP expression in the brains of rats with maternal LPS-induced PVL. The present study revealed that treadmill walking exercise is effective for the suppressing astrogliosis and hypomyelination associated with PVL. Here in this study, we showed that treadmill walking exercise may be effective therapeutic strategy for alleviating the detrimental effects of CP.
doi:10.12965/jer.140084
PMCID: PMC3952836  PMID: 24678499
Periventricular leukomalacia; Cerebral palsy; Glial fibrillary acidic protein; Myelin basic protein; Treadmill walking exercise
19.  Treadmill exercise alleviates prenatal noise stress-induced impairment of spatial learning ability through enhancing hippocampal neurogenesis in rat pups 
Stress alters brain cell properties and then disturbs cognitive processes, such as learning and memory. In this study, we investigated the effect of postnatal treadmill exercise on hippocampal neurogenesis and spatial learning ability of rat pups following prenatal noise stress. The impact of exercise intensity (mild-intensity exercise vs heavy-intensity exercise) was also compared. The pregnant rats in the stress-applied group were exposed to a 95 dB supersonic machine sound for 1 h once a day from the 15th day after mating until delivery. After birth, the rat pups in the exercise groups were made to run on a treadmill for 30 min once a day for 7 consecutive days, starting 4 weeks after birth. The spatial learning ability was tested using radial-arm maze task and hippocampal neurogenesis was determined by 5-bromo-2′-deoxyuridine (BrdU) immunohistochemistry. The rat pups born from the stress-applied maternal rats spent more time for the seeking of water and showed higher number of error in the radial-arm maze task compared to the control group. These rat pups showed suppressed neurogenesis in the hippocampus. In contrast, the rat pups performed postnatal treadmill exercise saved time for seeking of water and showed lower number of error compared to the stress-applied group. Postnatal treadmill exercise also enhanced neurogenesis in the hippocampus. The mild-intensity exercise showed more potent impact compared to the heavy-intensity exercise. The present results reveal that postnatal treadmill exercise lessens prenatal stress-induced deterioration of brain function in offspring.
doi:10.12965/jer.130064
PMCID: PMC3836547  PMID: 24282804
Prenatal noise stress; Postnatal treadmill exercise; Spatial learning ability; Neurogenrsis
20.  The impact of duration of one bout treadmill exercise on cell proliferation and central fatigue in rats 
The purpose of this study was to investigate the impact of the duration-dependence of the one bout treadmill exercise on cell proliferation, stress, and central fatigue in rats. The animals were randomly divided into five groups: the non-exercise group, 1-h exercise group, 2-h exercise group, 4-h exercise group, and 6-h exercise group. The exercise load consisted of running at speed of 13 meters/min with the 0° inclination. Cell proliferation in the hippocampal dentate gyrus was increased in response to one bout moderate treadmill exercise in all exercise groups. But there was no statistical significance between the exercise duration and cell proliferation. The optical density of glucocorticoid (GR)-positive cells in the hippocampal dentate gyrus was not changed by treadmill exercise at any exercise duration. Expressions of serotonin (5-hydroxytryptamine, 5-HT) and tryptophan hyroxylase (TPH) were increased by treadmill exercise only at 6 h duration. It seemed like that there was no additional benefits on cell proliferation over 2 h exercise due to stressful factors with over exercise dose, and there was no change of GR expression due to early assessment point of time. It can be suggested that the one-bout of moderate treadmill exercise increased cell proliferation, but treadmill exercise prolonged to 6 h induced central fatigue in rats.
doi:10.12965/jer.130069
PMCID: PMC3836548  PMID: 24282806
Treadmill exercise; Exercise duration; Cell proliferation; Glucocorticoid receptor; 5-hydroxytryptamine; Tryptophan hyroxylase
21.  An animal study to compare the degree of the suppressive effects on the afferent pathways of micturition between tamsulosin and sildenafil 
Background
Tamsulosin, an α1-adrenoceptor antagonist, and sildenafil, a phosphodiesterase (PDE) inhibitor, are reported to improve lower urinary tract symptoms including overactive bladder (OAB). This study is aimed at investing the effects of tamsulosin and sildenafil and comparing the degree of the suppressive effects on the afferent pathways of micturition between them using an animal model of OAB, the spontaneously hypertensive rat (SHR).
Results
The cystometric parameters, the basal pressure and duration of bladder contraction, were significantly increased in the SHR group as compared with the Wistar-Kyoto (WKY) group. The intercontraction interval also significantly decreased in the SHR group. In the SHR-Tam 0.01 mg/kg group and the SHR-Sil 1 mg/kg group, however, the basal pressure and duration were significantly reduced and the intercontraction interval was significantly prolonged. Moreover, the degree of the expression of c-Fos and NGF was significantly higher in the SHR group as compared with the WKY group. But it was significantly reduced in the SHR-Tam 0.01 mg/kg group and the SHR-Sil 1 mg/kg group. Furthermore, tamsulosin had a higher degree of effect as compared with sildenafil.
Conclusions
In conclusion, α1-adrenergic receptor antagonists and PDE-5 inhibitors may have an effect in improving the voiding functions through an inhibition of the neuronal activity in the afferent pathways of micturition.
doi:10.1186/1423-0127-20-81
PMCID: PMC3871018  PMID: 24160992
Overactive bladder syndrome; Tamsulosin; Sildenafil; Neuronal activity; Afferent pathways of micturition
22.  Treadmill exercise ameliorates impairment of spatial learning ability through enhancing dopamine expression in hypoxic ischemia brain injury in neonatal rats 
Substantia nigra and striatum are vulnerable to hypoxic ischemia brain injury. Physical exercise promotes cell survival and functional recovery after brain injury. However, the effects of treadmill exercise on nigro-striatal dopaminergic neuronal loss induced by hypoxic ischemia brain injury in neonatal stage are largely unknown. We determined the effects of treadmill exercise on survival of dopamine neurons in the substantia nigra and dopaminergic fibers in the striatum after hypoxic ischemia brain injury. On postnatal 7 day, left common carotid artery of the neonatal rats ligated for two hours and the neonatal rats were exposed to hypoxia conditions for one hour. The rat pups in the exercise groups were forced to run on a motorized treadmill for 30 min once a day for 12 weeks, starting 22 days after induction of hypoxic ischemia brain injury. Spatial learning ability in rat pups was determined by Morris water maze test after last treadmill exercise. The viability of dopamine neurons in the substantia nigra and dopamine fibers in the striatum were analyzed using immunohistochemistry. In this study, hypoxic ischemia injury caused loss of dopamine neurons in the substantia nigra and dopaminergic fibers in the striatum. Induction of hypoxic ischemia deteriorated spatial learning ability. Treadmill exercise ameliorated nigro-striatal dopaminergic neuronal loss, resulting in the improvement of spatial learning ability. The present study suggests the possibility that treadmill exercise in early adolescent period may provide a useful strategy for the recovery after neonatal hypoxic ischemia brain injury.
doi:10.12965/jer.130053
PMCID: PMC3836536  PMID: 24278893
Hypoxic ischemia; Substantia nigra; Striatum; Dopamine; Treadmill exercise
23.  Exposure to Music and Noise During Pregnancy Influences Neurogenesis and Thickness in Motor and Somatosensory Cortex of Rat Pups 
Purpose
Prenatal environmental conditions affect the development of the fetus. In the present study, we investigated the effects of exposure to music and noise during pregnancy on neurogenesis and thickness in the motor and somatosensory cortex of rat pups.
Methods
The pregnant rats in the music-applied group were exposed to 65 dB of comfortable music for 1 hour, once per day, from the 15th day of pregnancy until delivery. The pregnant rats in the noise-applied group were exposed to 95 dB of sound from a supersonic sound machine for 1 hour, once per day, from the 15th day of pregnancy until delivery. After birth, the offspring were left undisturbed together with their mother. The rat pups were sacrificed at 21 days after birth.
Results
Exposure to music during pregnancy increased neurogenesis in the motor and somatosensory cortex of rat pups. In contrast, rat pups exposed to noise during pregnancy showed decreased neurogenesis and thickness in the motor and somatosensory cortex.
Conclusions
Our study suggests that music and noise during the developmental period are important factors influencing brain development and urogenital disorders.
doi:10.5213/inj.2013.17.3.107
PMCID: PMC3797889  PMID: 24143288
Music; Noise; Neurogenesis; Motor cortex; Somatosensory cortex
24.  Treadmill exercise alleviates short-term memory impairment in 6-hydroxydopamine-induced Parkinson’s rats 
Progressive loss of dopaminergic neurons in substantia nigra is a key pathogenesis of Parkinson’s disease. In the present study, we investigated the effects of treadmill exercise on short-term memory, apoptotic dopaminergic neuronal cell death and fiber loss in the nigrostriatum, and cell proliferation in the hippocampal dentate gyrus of Parkinson’s rats. Parkinson’s rats were made by injection of 6-hydroxydopamine (6-OHDA) into the striatum using stereotaxic instrument. Four weeks after 6-OHDA injection, the rats in the 6-OHDA-injection group exhibited significant rotational asymmetry following apomorphine challenge. The rats in the exercise groups were put on the treadmill to run for 30 min once a day for 14 consecutive days starting 4 weeks after 6-OHDA injection. In the present results, extensive degeneration of the dopaminergic neurons in the substantia nigra with loss of dopaminergic fibers in the striatum were produced in the rats without treadmill running, which resulted in short-term memory impairment. However, the rats performing treadmill running for 2 weeks alleviated nigrostriatal dopaminergic cell loss and alleviated short-term memory impairment with increasing cell proliferation in the hippocampal dentate gyrus of Parkinson’s rats. The present results show that treadmill exercise may provide therapeutic value for the Parkinson’s disease.
doi:10.12965/jer.130048
PMCID: PMC3836534  PMID: 24278884
Parkinson’s rats; 6-Hydroxydopamine; Treadmill exercise; Cell proliferation; Apoptosis
25.  Treadmill exercise improves behavioral outcomes and spatial learning memory through up-regulation of reelin signaling pathway in autistic rats 
Autism is a complex neurodevelopmental disability with impairments of social interaction and communication, and repetitive behavior. Reelin is an extracellular glycoprotein that is essential for neuronal migration and brain development. Neuroprotective effects of exercise on various brain insults are well documented, however, the effects of exercise on autism in relation with reelin expression are not clarified. In the present study, we investigated the effects of treadmill exercise on the functional recovery and on the expressions of reelin and its downstream molecules, phosphatidylinositol-3-kinase (PI3K), phosphorylated Akt (p-Akt), phosphorylated extracellular signal-regulated protein kinase 1 and 2 (p-ERK1/2), using autistic rats. For the induction of autism-like animal model, 400 mg/kg valproic acid was subcutaneously injected into the rats on the postnatal day 14. The rat in the treadmill exercise groups were forced to run on a treadmill for 30 min once a day, five times a week for 4 weeks, starting postnatal day 28. To investigate autism-like behaviors and memory deficit, open field, social interaction, and radial 8-arm maze were performed. Immunohistochemistry and western blotting were conducted. In the present results, treadmill exercise alleviated aggressive tendency and improved correct decision in the spatial learning memory in the autistic rats. Treadmill exercise increased neurogenesis and the expressions of reelin and its down-stream molecules, PI3K, p-Akt, and p-ERK1/2, in the hippocampus of the autistic rats. The present study showed that treadmill exercise ameliorated aggressive behavior and improved spatial learning memory through activation of reeling signaling pathway in the valproic acid-induced autistic rats.
doi:10.12965/jer.130003
PMCID: PMC3836510  PMID: 24278864
Autism; Valproic acid; Treadmill exercise; Reelin; Hippocampus; Neurogenesis

Results 1-25 (31)