PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Purification, crystallization and preliminary X-ray crystallographic analysis of rice lectin from Oryza sativa  
Rice lectin was crystallized and analyzed by X-ray crystallography.
Lectins with sugar-binding specificity are widely distributed in higher plants and various other species. The expression of rice lectin from Oryza sativa is up-regulated in the growing coleoptile when anaerobic stress persists. A rice lectin of molecular weight 15.2 kDa has been crystallized using the hanging-drop vapour-diffusion method. From the diffraction of the lectin crystals at 1.93 Å resolution, the unit cell belongs to space group P31, with unit-cell parameters a = 98.58, b = 98.58, c = 44.72 Å. Preliminary analysis indicates that there are two lectin molecules in an asymmetric unit with a large solvent content, 70.1%.
doi:10.1107/S1744309105040698
PMCID: PMC2150942  PMID: 16511272
lectins; rice
2.  Detection of rare mutant K-ras DNA in a single-tube reaction using peptide nucleic acid as both PCR clamp and sensor probe 
Nucleic Acids Research  2006;34(2):e12.
The major problem of using somatic mutations as markers of malignancy is that the clinical samples are frequently containing a trace amounts of mutant allele in a large excess of wild-type DNA. Most methods developed thus far for the purpose of tickling this difficult problem require multiple procedural steps that are laborious. We report herein the development of a rapid and simple protocol for detecting a trace amounts of mutant K-ras in a single tube, one-step format. In a capillary PCR, a 17mer peptide nucleic acid (PNA) complementary to the wild-type sequence and spanning codons 12 and 13 of the K-ras oncogene was used to clamp-PCR for wild-type, but not mutant alleles. The designated PNA was labeled with a fluorescent dye for use as a sensor probe, which differentiated all 12 possible mutations from the wild-type by a melting temperature (Tm) shift in a range of 9 to 16°C. An extension temperature of 60°C and an opposite primer 97 nt away from the PNA were required to obtain full suppression of wild-type PCR. After optimization, the reaction detected mutant templates in a ratio of 1:10 000 wild-type alleles. Using this newly devised protocol, we have been able to detect 19 mutants in a group of 24 serum samples obtained from patients with pancreatic cancer. Taken together, our data suggest that this newly devised protocol can serve as an useful tool for cancer screening as well as in the detection of rare mutation in many diseases.
doi:10.1093/nar/gnj008
PMCID: PMC1345699  PMID: 16432256

Results 1-2 (2)