PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
Document Types
author:("shelf, David")
1.  Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi 
Traffic (Copenhagen, Denmark)  2012;13(8):1140-1159.
Retrograde trafficking transports proteins, lipids and toxins from the plasma membrane to the Golgi and ER. To reach the Golgi, these cargos must transit the endosomal system, consisting of early endosomes, recycling endosomes, late endosomes and lysosomes. All cargos pass through early endosomes, but may take different routes to the Golgi. Retromer dependent cargos bypass the late endosomes to reach the Golgi. We compared how two very different retromer dependent cargos negotiate the endosomal sorting system. Shiga toxin B, bound to the external layer of the plasma membrane, and chimeric CD8-Mannose-6-Phosphate Receptor, which is anchored via a transmembrane domain. Both appear to pass through the recycling endosome. Ablation of the recycling endosome diverted both of these cargos to an aberrant compartment and prevented them from reaching the Golgi. Once in the recycling endosome, Shiga toxin required EHD1 to traffic to the TGN, while the CD8-Mannose-6-Phosphate Receptor was not significantly dependent on EHD1. Knockdown of retromer components left cargo in the early endosomes, suggesting that it is required for retrograde exit from this compartment. This work establishes the recycling endosome as a required step in retrograde traffic of at least these two retromer dependent cargos. Along this pathway, retromer is associated with EE to recycling endosome traffic, while EHD1 is associated with recycling endosome to TGN traffic of STxB.
doi:10.1111/j.1600-0854.2012.01374.x
PMCID: PMC3396774  PMID: 22540229
Cation-independent Mannose 6-phosphate receptor; Membrane Traffic; EHD1; SNX1; BSC-1; Endosomes; Endocytosis; Retrograde Traffic; Retromer; Shiga Toxin; Shiga B; Recycling Endosome; Early Endosome; VPS26
2.  RalA and RalB differentially regulate development of epithelial tight junctions 
Molecular Biology of the Cell  2011;22(24):4787-4800.
The closely related GTPases RalA and RalB are required for assembly of tight junction gate, but not fence, function. These activities depend on direct binding to the exocyst complex. Whereas RalA–exocyst complexes are required for exocytosis of junction proteins, RalB–exocyst complexes are required for endocytosis of these components.
Tight junctions (TJs) are structures indispensable to epithelial cells and are responsible for regulation of paracellular diffusion and maintenance of cellular polarity. Although many interactions between TJ constituents have been identified, questions remain concerning how specific functions of TJs are established and regulated. Here we investigated the roles of Ral GTPases and their common effector exocyst complex in the formation of nascent TJs. Unexpectedly, RNA interference–mediated suppression of RalA or RalB caused opposing changes in TJ development. RalA reduction increased paracellular permeability and decreased incorporation of components into TJs, whereas RalB reduction decreased paracellular permeability and increased incorporation of components into TJs. Activities of both Ral GTPases were mediated through the exocyst. Finally, we show that TJ-mediated separation of apical–basal membrane domains is established prior to equilibration of barrier function and that it is unaffected by Ral knockdown or specific composition of TJs.
doi:10.1091/mbc.E11-07-0657
PMCID: PMC3237622  PMID: 22013078
3.  Deciliation Is Associated with Dramatic Remodeling of Epithelial Cell Junctions and Surface Domains 
Molecular Biology of the Cell  2009;20(1):102-113.
Stress-induced shedding of motile cilia (autotomy) has been documented in diverse organisms and likely represents a conserved cellular reaction. However, little is known about whether primary cilia are shed from mammalian epithelial cells and what impact deciliation has on polarized cellular organization. We show that several chemically distinct agents trigger autotomy in epithelial cells. Surprisingly, deciliation is associated with a significant, but reversible increase in transepithelial resistance. This reflects substantial reductions in tight junction proteins associated with “leaky” nephron segments (e.g., claudin-2). At the same time, apical trafficking of gp80/clusterin and gp114/CEACAM becomes randomized, basal-lateral delivery of Na,K-ATPase is reduced, and expression of the nonciliary apical protein gp135/podocalyxin is greatly decreased. However, ciliogenesis-impaired MDCK cells do not undergo continual junction remodeling, and mature cilia are not required for autotomy-associated remodeling events. Deciliation and epithelial remodeling may be mechanistically linked processes, because RNAi-mediated reduction of Exocyst subunit Sec6 inhibits ciliary shedding and specifically blocks deciliation-associated down-regulation of claudin-2 and gp135. We propose that ciliary autotomy represents a signaling pathway that impacts the organization and function of polarized epithelial cells.
doi:10.1091/mbc.E08-07-0741
PMCID: PMC2613083  PMID: 19005211
4.  Rab8 Regulates Basolateral Secretory, But Not Recycling, Traffic at the Recycling Endosome 
Molecular Biology of the Cell  2008;19(5):2059-2068.
Rab8 is a monomeric GTPase that regulates the delivery of newly synthesized proteins to the basolateral surface in polarized epithelial cells. Recent publications have demonstrated that basolateral proteins interacting with the μ1-B clathrin adapter subunit pass through the recycling endosome (RE) en route from the TGN to the plasma membrane. Because Rab8 interacts with these basolateral proteins, these findings raise the question of whether Rab8 acts before, at, or after the RE. We find that Rab8 overexpression during the formation of polarity in MDCK cells, disrupts polarization of the cell, explaining how Rab8 mutants can disrupt basolateral endocytic and secretory traffic. However, once cells are polarized, Rab8 mutants cause mis-sorting of newly synthesized basolateral proteins such as VSV-G to the apical surface, but do not cause mis-sorting of membrane proteins already at the cell surface or in the endocytic recycling pathway. Enzymatic ablation of the RE also prevents traffic from the TGN from reaching the RE and similarly results in mis-sorting of newly synthesized VSV-G. We conclude that Rab8 regulates biosynthetic traffic through REs to the plasma membrane, but not trafficking of endocytic cargo through the RE. The data are consistent with a model in which Rab8 functions in regulating the delivery of TGN-derived cargo to REs.
doi:10.1091/mbc.E07-09-0902
PMCID: PMC2366880  PMID: 18287531
5.  Recycling Endosomes of Polarized Epithelial Cells Actively Sort Apical and Basolateral Cargos into Separate Subdomains 
Molecular Biology of the Cell  2007;18(7):2687-2697.
The plasma membranes of epithelial cells plasma membranes contain distinct apical and basolateral domains that are critical for their polarized functions. However, both domains are continuously internalized, with proteins and lipids from each intermixing in supranuclear recycling endosomes (REs). To maintain polarity, REs must faithfully recycle membrane proteins back to the correct plasma membrane domains. We examined sorting within REs and found that apical and basolateral proteins were laterally segregated into subdomains of individual REs. Subdomains were absent in unpolarized cells and developed along with polarization. Subdomains were formed by an active sorting process within REs, which precedes the formation of AP-1B–dependent basolateral transport vesicles. Both the formation of subdomains and the fidelity of basolateral trafficking were dependent on PI3 kinase activity. This suggests that subdomain and transport vesicle formation occur as separate sorting steps and that both processes may contribute to sorting fidelity.
doi:10.1091/mbc.E05-09-0873
PMCID: PMC1924834  PMID: 17494872
6.  Shiga Toxin Facilitates Its Retrograde Transport by Modifying Microtubule Dynamics 
Molecular Biology of the Cell  2006;17(10):4379-4389.
The bacterial exotoxin Shiga toxin is endocytosed by mammalian host cells and transported retrogradely through the secretory pathway before entering the cytosol. Shiga toxin also increases the levels of microfilaments and microtubules (MTs) upon binding to the cell surface. The purpose for this alteration in cytoskeletal dynamics is unknown. We have investigated whether Shiga toxin-induced changes in MT levels facilitate its intracellular transport. We have tested the effects of the Shiga toxin B subunit (STB) on MT-dependent and -independent transport steps. STB increases the rate of MT-dependent Golgi stack repositioning after nocodazole treatment. It also enhances the MT-dependent accumulation of transferrin in a perinuclear recycling compartment. By contrast, the rate of MT-independent transferrin recycling is not significantly different when STB is present. We found that STB normally requires MTs and dynein for its retrograde transport to the juxtanuclear Golgi complex and that STB increases MT assembly. Furthermore, we find that MT polymerization is limiting for STB transport in cells. These results show that STB-induced changes in cytoskeletal dynamics influence intracellular transport. We conclude that the increased rate of MT assembly upon Shiga toxin binding facilitates the retrograde transport of the toxin through the secretory pathway.
doi:10.1091/mbc.E06-04-0310
PMCID: PMC1635369  PMID: 16885418
7.  Vectorial insertion of apical and basolateral membrane proteins in polarized epithelial cells revealed by quantitative 3D live cell imaging 
The Journal of Cell Biology  2006;172(7):1035-1044.
Although epithelial cells are known to exhibit a polarized distribution of membrane components, the pathways responsible for delivering membrane proteins to their appropriate domains remain unclear. Using an optimized approach to three-dimensional live cell imaging, we have visualized the transport of newly synthesized apical and basolateral membrane proteins in fully polarized filter-grown Madin–Darby canine kidney cells. We performed a detailed quantitative kinetic analysis of trans-Golgi network (TGN) exit, passage through transport intermediates, and arrival at the plasma membrane using cyan/yellow fluorescent protein–tagged glycosylphosphatidylinositol-anchored protein and vesicular stomatitis virus glycoprotein as apical and basolateral reporters, respectively. For both pathways, exit from the TGN was rate limiting. Furthermore, apical and basolateral proteins were targeted directly to their respective membranes, resolving current confusion as to whether sorting occurs on the secretory pathway or only after endocytosis. However, a transcytotic protein did reach the apical surface after a prior appearance basolaterally. Finally, newly synthesized proteins appeared to be delivered to the entire lateral or apical surface, suggesting—contrary to expectations—that there is not a restricted site for vesicle docking or fusion adjacent to the junctional complex.
doi:10.1083/jcb.200512012
PMCID: PMC2063761  PMID: 16567501
8.  Transcytosis of NgCAM in epithelial cells reflects differential signal recognition on the endocytic and secretory pathways 
The Journal of Cell Biology  2005;170(4):595-605.
NgCAM is a cell adhesion molecule that is largely axonal in neurons and apical in epithelia. In Madin-Darby canine kidney cells, NgCAM is targeted to the apical surface by transcytosis, being first inserted into the basolateral domain from which it is internalized and transported to the apical domain. Initial basolateral transport is mediated by a sequence motif (Y33RSL) decoded by the AP-1B clathrin adaptor complex. This motif is a substrate in vitro for tyrosine phosphorylation by p60src, a modification that disrupts NgCAM's ability to interact with clathrin adaptors. Based on the behavior of various NgCAM mutants, it appears that after arrival at the basolateral surface, the AP-1B interaction site is silenced by phosphorylation of Tyr33. This slows endocytosis and inhibits basolateral recycling from endosomes, resulting in NgCAM transcytosis due to a cryptic apical targeting signal in its extracellular domain. Thus, transcytosis of NgCAM and perhaps other membrane proteins may reflect the spatial regulation of recognition by adaptors such as AP-1B.
doi:10.1083/jcb.200506051
PMCID: PMC2171499  PMID: 16087710
9.  Transferrin receptor recycling in the absence of perinuclear recycling endosomes 
The Journal of Cell Biology  2002;156(5):797-804.
In mammalian cells, internalized receptors such as transferrin (Tfn) receptor are presumed to pass sequentially through early endosomes (EEs) and perinuclear recycling endosomes (REs) before returning to the plasma membrane. Whether passage through RE is obligatory, however, remains unclear. Kinetic analysis of endocytosis in CHO cells suggested that the majority of internalized Tfn bypassed REs returning to the surface from EEs. To determine directly if REs are dispensable for recycling, we studied Tfn recycling in cytoplasts microsurgically created to contain peripheral EEs but to exclude perinuclear REs. The cytoplasts actively internalized and recycled Tfn. Surprisingly, they also exhibited spatially and temporally distinct endosome populations. The first appeared to correspond to EEs, labeling initially with Tfn, being positive for early endosomal antigen 1 (EEA-1) and containing only small amounts of Rab11, an RE marker. The second was EEA-1 negative and with time recruited Rab11, suggesting that cytoplasts assembled functional REs. These results suggest that although perinuclear REs are not essential components of the Tfn recycling pathway, they are dynamic structures which preexist in the peripheral cytoplasm or can be regenerated from EE- and cytosol-derived components such as Rab11.
doi:10.1083/jcb.20111048
PMCID: PMC2173326  PMID: 11877458
endocytosis; recycling; transferrin; biogenesis; cytoplast
10.  Actin Dependence of Polarized Receptor Recycling in Madin-Darby Canine Kidney Cell EndosomesV⃞ 
Molecular Biology of the Cell  2002;13(1):262-275.
Mammalian epithelial cell plasma membrane domains are separated by junctional complexes supported by actin. The extent to which actin acts elsewhere to maintain cell polarity remains poorly understood. Using latrunculin B (Lat B) to depolymerize actin filaments, several basolateral plasma membrane proteins were found to lose their polarized distribution. This loss of polarity did not reflect lateral diffusion through junctional complexes because a low-density lipoprotein receptor mutant lacking a functional endocytosis signal remained basolateral after Lat B treatment. Furthermore, Lat B treatment did not facilitate membrane diffusion across the tight junction as observed with ethylenediaminetetraacetic acid or dimethyl sulfoxide treatment. Detailed analysis of transferrin recycling confirmed Lat B depolarized recycling of transferrin from endosomes to the basolateral surface. Kinetic analysis suggested sorting was compromised at both basolateral early endosomes and perinuclear recycling endosomes. Despite loss of function, these two endosome populations remained distinct from each other and from early endosomes labeled by apically internalized ligand. Furthermore, apical and basolateral early endosomes were functionally distinct populations that directed traffic to a single common recycling endosomal compartment even after Lat B treatment. Thus, filamentous actin may help to guide receptor traffic from endosomes to the basolateral plasma membrane.
doi:10.1091/mbc.01-07-0320
PMCID: PMC65087  PMID: 11809838
11.  The Receptor Recycling Pathway Contains Two Distinct Populations of Early Endosomes with Different Sorting Functions  
The Journal of Cell Biology  1999;145(1):123-139.
Receptor recycling involves two endosome populations, peripheral early endosomes and perinuclear recycling endosomes. In polarized epithelial cells, either or both populations must be able to sort apical from basolateral proteins, returning each to its appropriate plasma membrane domain. However, neither the roles of early versus recycling endosomes in polarity nor their relationship to each other has been quantitatively evaluated. Using a combined morphological, biochemical, and kinetic approach, we found these two endosome populations to represent physically and functionally distinct compartments. Early and recycling endosomes were resolved on Optiprep gradients and shown to be differentially associated with rab4, rab11, and transferrin receptor; rab4 was enriched on early endosomes and at least partially depleted from recycling endosomes, with the opposite being true for rab11 and transferrin receptor. The two populations were also pharmacologically distinct, with AlF4 selectively blocking export of transferrin receptor from recycling endosomes to the basolateral plasma membrane. We applied these observations to a detailed kinetic analysis of transferrin and dimeric IgA recycling and transcytosis. The data from these experiments permitted the construction of a testable, mathematical model which enabled a dissection of the roles of early and recycling endosomes in polarized receptor transport. Contrary to expectations, the majority (>65%) of recycling to the basolateral surface is likely to occur from early endosomes, but with relatively little sorting of apical from basolateral proteins. Instead, more complete segregation of basolateral receptors from receptors intended for transcytosis occurred upon delivery to recycling endosomes.
PMCID: PMC2148223  PMID: 10189373
sorting; endosomes; receptor recycling
12.  Efficient Presentation of Phagocytosed Cellular Fragments on the Major Histocompatibility Complex Class II Products of Dendritic Cells  
The Journal of Experimental Medicine  1998;188(11):2163-2173.
Cells from the bone marrow can present peptides that are derived from tumors, transplants, and self-tissues. Here we describe how dendritic cells (DCs) process phagocytosed cell fragments onto major histocompatibility complex (MHC) class II products with unusual efficacy. This was monitored with the Y-Ae monoclonal antibody that is specific for complexes of I-Ab MHC class II presenting a peptide derived from I-Eα. When immature DCs from I-Ab mice were cultured for 5–20 h with activated I-E+ B blasts, either necrotic or apoptotic, the DCs produced the epitope recognized by the Y-Ae monoclonal antibody and stimulated T cells reactive with the same MHC–peptide complex. Antigen transfer was also observed with human cells, where human histocompatibility leukocyte antigen (HLA)-DRα includes the same peptide sequence as mouse I-Eα. Antigen transfer was preceded by uptake of B cell fragments into MHC class II–rich compartments. Quantitation of the amount of I-E protein in the B cell fragments revealed that phagocytosed I-E was 1–10 thousand times more efficient in generating MHC–peptide complexes than preprocessed I-E peptide. When we injected different I-E– bearing cells into C57BL/6 mice to look for a similar phenomenon in vivo, we found that short-lived migrating DCs could be processed by most of the recipient DCs in the lymph node. The consequence of antigen transfer from migratory DCs to lymph node DCs is not yet known, but we suggest that in the steady state, i.e., in the absence of stimuli for DC maturation, this transfer leads to peripheral tolerance of the T cell repertoire to self.
PMCID: PMC2212389  PMID: 9841929
apoptosis; necrosis; dendritic cells; major histocompatibility complex–peptide complexes; immature dendritic cells
13.  Inhibition of Endosome Function in CHO Cells Bearing a Temperature-sensitive Defect in the Coatomer (COPI) Component ε-COP  
The Journal of Cell Biology  1997;139(7):1747-1759.
Recent evidence has suggested that subunits of the coatomer protein (COPI) complexes are functionally associated with endosomes in mammalian cells. We now provide genetic evidence that COPI plays a role in endocytosis in intact cells. The ldlF mutant CHO cell line bears a temperature-sensitive defect in the COPI subunit ε-COP. In addition to exhibiting conditional defects in the secretory pathway, we find that the cells are also defective at mediating endosome-associated functions. As found for cells microinjected with anti-COPI antibodies, ldlF cells at the restrictive temperature could not be infected by vesicular stomatitis (VSV) or Semliki Forest virus (SFV) that require delivery to acidic endosomes to penetrate into the cytosol. Although there was no temperature-sensitive defect in the internalization of receptor-bound transferrin (Tfn), Tfn recycling and accumulation of HRP were markedly inhibited at the restrictive temperature. Sorting of receptor-bound markers such as EGF to lysosomes was also reduced, although delivery of fluid-phase markers was only partially inhibited. In addition, lysosomes redistributed from their typical perinuclear location to the tips of the ldlF cells. Mutant phenotypes began to emerge within 2 h of temperature shift, the time required for the loss of detectable ε-COP, suggesting that the endocytic defects were not secondary to a block in the secretory pathway. Importantly, the mutant phenotypes were also corrected by transfection of wild-type ε-COP cDNA demonstrating that they directly or indirectly reflected the ε-COP defect. Taken together, the results suggest that ε-COP acts early in the endocytic pathway, most likely inhibiting the normal sorting and recycling functions of early endosomes.
PMCID: PMC2132642  PMID: 9412469

Results 1-13 (13)