PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
1.  The Cyclase-Associated Protein Cap1 Is Important for Proper Regulation of Infection-Related Morphogenesis in Magnaporthe oryzae 
PLoS Pathogens  2012;8(9):e1002911.
Surface recognition and penetration are critical steps in the infection cycle of many plant pathogenic fungi. In Magnaporthe oryzae, cAMP signaling is involved in surface recognition and pathogenesis. Deletion of the MAC1 adenylate cyclase gene affected appressorium formation and plant infection. In this study, we used the affinity purification approach to identify proteins that are associated with Mac1 in vivo. One of the Mac1-interacting proteins is the adenylate cyclase-associated protein named Cap1. CAP genes are well-conserved in phytopathogenic fungi but none of them have been functionally characterized. Deletion of CAP1 blocked the effects of a dominant RAS2 allele and resulted in defects in invasive growth and a reduced intracellular cAMP level. The Δcap1 mutant was defective in germ tube growth, appressorium formation, and formation of typical blast lesions. Cap1-GFP had an actin-like localization pattern, localizing to the apical regions in vegetative hyphae, at the periphery of developing appressoria, and in circular structures at the base of mature appressoria. Interestingly, Cap1, similar to LifeAct, did not localize to the apical regions in invasive hyphae, suggesting that the apical actin cytoskeleton differs between vegetative and invasive hyphae. Domain deletion analysis indicated that the proline-rich region P2 but not the actin-binding domain (AB) of Cap1 was responsible for its subcellular localization. Nevertheless, the AB domain of Cap1 must be important for its function because CAP1ΔAB only partially rescued the Δcap1 mutant. Furthermore, exogenous cAMP induced the formation of appressorium-like structures in non-germinated conidia in CAP1ΔAB transformants. This novel observation suggested that AB domain deletion may result in overstimulation of appressorium formation by cAMP treatment. Overall, our results indicated that CAP1 is important for the activation of adenylate cyclase, appressorium morphogenesis, and plant infection in M. oryzae. CAP1 may also play a role in feedback inhibition of Ras2 signaling when Pmk1 is activated.
Author Summary
In Magnaporthe oryzae, cAMP signaling is known to play an important role in surface recognition and plant penetration. The Mac1 adenylate cyclase is essential for plant infection. To better understand Mac1 activation mechanisms, in this study we used the affinity purification approach to identify proteins that are associated with Mac1 in vivo. One of the Mac1-interacting protein is the adenylate cyclase associated protein (CAP) encoded by the CAP1 gene. Results from our study indicated that Cap1 is important for Mac1 activation and plant infection in M. oryzae. The Δcap1 mutant was defective in germ tube growth and appressorium formation and failed to cause typical blast lesions. Like LifeAct, Cap1 localized to apical patches in vegetative hyphae but not in invasive hyphae. The P2 proline-rich region was important for Cap1 localization but the actin-binding domain played a role in feedback inhibition of Ras signaling. To our knowledge, functional characterization of CAP genes has not been reported in filamentous fungi. Our results indicate that CAP1 is important for regulating adenylate cyclase activities, appressorium morphogenesis, and plant infection. Further characterization of CAP1 will be important to better understand the interaction between cAMP signaling and the PMK1 pathway in M. oryzae.
doi:10.1371/journal.ppat.1002911
PMCID: PMC3435248  PMID: 22969430
2.  Aspergillus nidulans ArfB Plays a Role in Endocytosis and Polarized Growth ▿ †  
Eukaryotic Cell  2008;7(8):1278-1288.
Filamentous fungi undergo polarized growth throughout most of their life cycles. The Spitzenkörper is an apical organelle composed primarily of vesicles that is unique to filamentous fungi and is likely to act as a vesicle supply center for tip growth. Vesicle assembly and trafficking are therefore important for hyphal growth. ADP ribosylation factors (Arfs), a group of small GTPase proteins, play an important role in nucleating vesicle assembly. Little is known about the role of Arfs in filamentous hyphal growth. We found that Aspergillus nidulans is predicted to encode six Arf family proteins. Analysis of protein sequence alignments suggests that A. nidulans ArfB shares similarity with ARF6 of Homo sapiens and Arf3p of Saccharomyces cerevisiae. An arfB null allele (arfB disrupted by a transposon [arfB::Tn]) was characterized by extended isotropic growth of germinating conidia followed by cell lysis or multiple, random germ tube emergence, consistent with a failure to establish polarity. The mutant germ tubes and hyphae that do form initially meander abnormally off of the axis of polarity and frequently exhibit dichotomous branching at cell apices, consistent with a defect in polarity maintenance. FM4-64 staining of the arfB::Tn strain revealed that another phenotypic characteristic seen for arfB::Tn is a reduction and delay in endocytosis. ArfB is myristoylated at its N terminus. Green fluorescent protein-tagged ArfB (ArfB::GFP) localizes to the plasma membrane and endomembranes and mutation (ArfBG2A::GFP) of the N-terminal myristoylation motif disperses the protein to the cytoplasm rather than to the membranes. These results demonstrate that ArfB functions in endocytosis to play important roles in polarity establishment during isotropic growth and polarity maintenance during hyphal extension.
doi:10.1128/EC.00039-08
PMCID: PMC2519773  PMID: 18539885
3.  Root Infection and Systemic Colonization of Maize by Colletotrichum graminicola▿  
Colletotrichum graminicola is a filamentous ascomycete that causes anthracnose disease of maize. While the fungus can cause devastating foliar leaf blight and stalk rot diseases, little is known about its ability to infect roots. Previously published reports suggest that C. graminicola may infect maize roots and that root infections may contribute to the colonization of aboveground plant tissues, leading to disease. To determine whether C. graminicola can infect maize roots and whether root infections can result in the colonization of aboveground plant tissues, we developed a green fluorescent protein-tagged strain and used it to study the plant root colonization and infection process in vivo. We observed structures produced by other root pathogenic fungi, including runner hyphae, hyphopodia, and microsclerotia. A mosaic pattern of infection resulted from specific epidermal and cortical cells becoming infected by intercellular hyphae while surrounding cells were uninfected, a pattern that is distinctly different from that described for leaves. Interestingly, falcate conidia, normally restricted to acervuli, were also found filling epidermal cells and root hairs. Twenty-eight percent of plants challenged with soilborne inoculum became infected in aboveground plant parts (stem and/or leaves), indicating that root infection can lead to asymptomatic systemic colonization of the plants. Many of the traits observed for C. graminicola have been previously reported for other root-pathogenic fungi, suggesting that these traits are evolutionally conserved in multiple fungal lineages. These observations suggest that root infection may be an important component of the maize anthracnose disease cycle.
doi:10.1128/AEM.01165-07
PMCID: PMC2227703  PMID: 18065625
4.  RNAi Screen of Endoplasmic Reticulum–Associated Host Factors Reveals a Role for IRE1α in Supporting Brucella Replication 
PLoS Pathogens  2008;4(7):e1000110.
Brucella species are facultative intracellular bacterial pathogens that cause brucellosis, a global zoonosis of profound importance. Although recent studies have demonstrated that Brucella spp. replicate within an intracellular compartment that contains endoplasmic reticulum (ER) resident proteins, the molecular mechanisms by which the pathogen secures this replicative niche remain obscure. Here, we address this issue by exploiting Drosophila S2 cells and RNA interference (RNAi) technology to develop a genetically tractable system that recapitulates critical aspects of mammalian cell infection. After validating this system by demonstrating a shared requirement for phosphoinositide 3-kinase (PI3K) activities in supporting Brucella infection in both host cell systems, we performed an RNAi screen of 240 genes, including 110 ER-associated genes, for molecules that mediate bacterial interactions with the ER. We uncovered 52 evolutionarily conserved host factors that, when depleted, inhibited or increased Brucella infection. Strikingly, 29 of these factors had not been previously suggested to support bacterial infection of host cells. The most intriguing of these was inositol-requiring enzyme 1 (IRE1), a transmembrane kinase that regulates the eukaryotic unfolded protein response (UPR). We employed IRE1α−/− murine embryonic fibroblasts (MEFs) to demonstrate a role for this protein in supporting Brucella infection of mammalian cells, and thereby, validated the utility of the Drosophila S2 cell system for uncovering novel Brucella host factors. Finally, we propose a model in which IRE1α, and other ER-associated genes uncovered in our screen, mediate Brucella replication by promoting autophagosome biogenesis.
Author Summary
Brucella spp. are facultative intracellular pathogens that cause brucellosis in a broad range of hosts, including humans. Brucella melitensis, B. abortus, and B. suis are highly infectious and can be readily transmitted in aerosolized form, and a human vaccine against brucellosis is unavailable. Therefore, these pathogens are recognized as potential bioterror agents. Because genetic systems for studying host–Brucella interactions have been unavailable, little is known about the host factors that mediate infection. Here, we demonstrate that a Drosophila S2 cell system and RNA interference can be exploited to study the role that evolutionarily conserved Brucella host proteins play in these processes. We also show that this system provides for the identification and characterization of host factors that mediate Brucella interactions with the host cell endoplasmic reticulum. In fact, we identified 52 host factors that, when depleted, inhibited or increased Brucella infection. Among the identified Brucella host factors, 29 have not been previously shown to support bacterial infection. Finally, we demonstrate that the novel host factor inositol-requiring enzyme 1 (IRE1) and its mammalian ortholog (IRE1α) are required for Brucella infection of Drosophila S2 and mammalian cells, respectively. Therefore, this work contributes to our understanding of host factors mediating Brucella infection.
doi:10.1371/journal.ppat.1000110
PMCID: PMC2453327  PMID: 18654626
5.  ArfB links protein lipidation and endocytosis to polarized growth of Aspergillus nidulans 
Aspergillus nidulans undergoes polarized hyphal growth during the majority of its life cycle. Regulatory mechanisms for hyphal polarity have been intensively investigated in a variety of filamentous fungi. Two important cellular processes, which have received recent attention, include protein myristoylation and endocytosis. It is clear that protein myristoylation is essential for polarity establishment because germinating A. nidulans conidia lost polarity in the presence of cerulenin, a lipid metabolism inhibitor and in an N-myristoyl transferase mutant background. Only 41 predicted proteins encoded by A. nidulans posses an N-myristoylation motif, one of which is ADP ribosylation factor B (ArfB). Disruption of ArfB leads to failure of polarity establishment and maintenance during early morphogenesis and in a delay in endocytosis. Therefore, ArfB connects N-myristoylation and endocytosis to polarized growth. Exocytotic vesicle trafficking through the Spitzenkörper may also require Arf proteins in their role in vesicle formation. Taken together, ArfB is one of the important key components for the fungal hyphal growth.
PMCID: PMC2633799  PMID: 19704790
ArfB; endocytosis; N-myristoylation; polarized growth; protein lipidation
6.  AboutKidsHealth: A Unique Initiative in Pediatric Consumer Health Informatics 
Summary
Consumers of online health information are concerned with issues of quality and trust.
No sites presently offer comprehensive child health information and tools for families seeking solutions to complex questions that may involve disease, lifestyle, behavioral, and educational issues. Parents of children with complex health issues as well as parents of typically developing children, need a trusted, comprehensive online resource to inform and guide. To meet this need, The Hospital for Sick Children, with the support of founding sponsor TD Securities, launched a unique initiative, AboutKidsHealth in June2004. The project employs web technology combined with social marketing campaigns to promote and deliver evidence-based information and programmes in all major areas influencing child health and family quality of life. The web-based infrastructure will also be used to support selected research projects, and to provide enhanced communication and services for families of children with complex conditions and health professionals.
PMCID: PMC1839327
8.  Aspergillus nidulans swoF Encodes an N-Myristoyl Transferase 
Eukaryotic Cell  2002;1(2):241-248.
Polar growth is a fundamental process in filamentous fungi and is necessary for disease initiation in many pathogenic systems. Previously, swoF was identified in Aspergillus nidulans as a single-locus, temperature-sensitive (ts) mutant aberrant in both polarity establishment and polarity maintenance. The swoF gene was cloned by complementation of the ts phenotype and sequenced. The derived protein sequence had high identity with N-myristoyl transferases (NMTs) found in fungi, plants, and animals. In addition, wild-type growth at restrictive temperature was partially restored by the addition of myristic acid to the growth medium. Sequencing revealed that the mutation in swoF changes the conserved aspartic acid 369 to a tyrosine. The predicted A. nidulans SwoF protein, SwoFp, was homology modeled based on crystal structures of NMTs from Saccharomyces cerevisiae and Candida albicans. The D369Y swoF mutation is on the opposite face of the protein, distal to the myristoyl coenzyme A and peptide substrate binding sites. In wild-type NMTs, D369 appears to stabilize a structural β-strand bend through two hydrogen bonds and an ionic interaction. These stabilizing bonds are abolished in the D369Y mutant. We hypothesize that a substrate of SwoFp must be myristoylated for proper polarity establishment and maintenance. The mutation prevents the proper function of SwoFp at restrictive temperature and thus blocks polar growth.
doi:10.1128/EC.1.2.241-248.2002
PMCID: PMC118038  PMID: 12455958

Results 1-9 (9)