PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Randomised, double blind, placebo‐controlled trial of selenium supplementation in adult asthma 
Thorax  2007;62(6):483-490.
Background
Epidemiological evidence from observational studies has suggested that blood levels and dietary intake of selenium of adults with asthma are lower than those of controls. The only previous trial of selenium supplementation in adults with asthma found no objective evidence of benefit but involved only 24 participants.
Methods
A randomised, double blind, placebo‐controlled trial of selenium supplementation was performed in adults with asthma in London, UK, the majority of whom (75%) reported inhaled steroid use at baseline. 197 participants were randomised to receive either a high‐selenium yeast preparation (100 µg daily, n = 99) or placebo (yeast only, n = 98) for 24 weeks. The primary outcome was asthma‐related quality of life (QoL) score. Secondary outcomes included lung function, asthma symptom scores, peak flow and bronchodilator usage. Linear regression was used to analyse the change in outcome between the two treatment arms by “intention to treat”.
Results
There was a 48% increase in plasma selenium between baseline and end of trial in the active treatment group but no change in the placebo group. While the QoL score improved more in the active treatment group than in the placebo group, the difference in change in score between the two groups was not significant (−0.05 (95% CI −0.19 to 0.09); p = 0.47). Selenium supplementation was not associated with any significant improvement in secondary outcomes compared with placebo.
Conclusions
Selenium supplementation had no clinical benefit in adults with asthma, the majority of whom were taking inhaled steroids.
doi:10.1136/thx.2006.071563
PMCID: PMC2117223  PMID: 17234657
2.  Inactive alleles of cytochrome P450 2C19 may be positively selected in human evolution 
Background
Cytochrome P450 CYP2C19 metabolizes a wide range of pharmacologically active substances and a relatively small number of naturally occurring environmental toxins. Poor activity alleles of CYP2C19 are very frequent worldwide, particularly in Asia, raising the possibility that reduced metabolism could be advantageous in some circumstances. The evolutionary selective forces acting on this gene have not previously been investigated.
We analyzed CYP2C19 genetic markers from 127 Gambians and on 120 chromosomes from Yoruba, Europeans and Asians (Japanese + Han Chinese) in the Hapmap database. Haplotype breakdown was explored using bifurcation plots and relative extended haplotype homozygosity (REHH). Allele frequency differentiation across populations was estimated using the fixation index (FST) and haplotype diversity with coalescent models.
Results
Bifurcation plots suggested conservation of alleles conferring slow metabolism (CYP2C19*2 and *3). REHH was high around CYP2C19*2 in Yoruba (REHH 8.3, at 133.3 kb from the core) and to a lesser extent in Europeans (3.5, at 37.7 kb) and Asians (2.8, at −29.7 kb). FST at the CYP2C19 locus was low overall (0.098). CYP2C19*3 was an FST outlier in Asians (0.293), CYP2C19 haplotype diversity < = 0.037, p <0.001.
Conclusions
We found some evidence that the slow metabolizing allele CYP2C19*2 is subject to positive selective forces worldwide. Similar evidence was also found for CYP2C19*3 which is frequent only in Asia. FST is low at the CYP2C19 locus, suggesting balancing selection overall. The biological factors responsible for these selective pressures are currently unknown. One possible explanation is that early humans were exposed to a ubiquitous novel toxin activated by CYP2C19. The genetic adaptation took place within the last 10,000 years which coincides with the development of systematic agricultural practices.
doi:10.1186/1471-2148-14-71
PMCID: PMC4036532  PMID: 24690327
Positive selection; Cytochrome P450 2C19; Xenobiotics; Drug metabolism; Extended haplotype homozygosity; Bifurcation plots
3.  Prenatal alcohol exposure and childhood atopic disease: A Mendelian randomization approach☆ 
Background
Alcohol consumption in western pregnant women is not uncommon and could be a risk factor for childhood atopic disease. However, reported alcohol intake may be unreliable, and associations are likely to be confounded.
Objective
We aimed to study the relation between prenatal alcohol exposure and atopic phenotypes in a large population-based birth cohort with the use of a Mendelian randomization approach to minimize bias and confounding.
Methods
In white mothers and children in the Avon Longitudinal Study of Parents and Children (ALSPAC) we first analyzed associations between reported maternal alcohol consumption during pregnancy and atopic outcomes in the offspring measured at 7 years of age (asthma, wheezing, hay fever, eczema, atopy, and total IgE). We then analyzed the relation of maternal alcohol dehydrogenase (ADH)1B genotype (rs1229984) with these outcomes (the A allele is associated with faster metabolism and reduced alcohol consumption and, among drinkers, would be expected to reduce fetal exposure to ethanol).
Results
After controlling for confounders, reported maternal drinking in late pregnancy was negatively associated with childhood asthma and hay fever (adjusted odds ratio [OR] per category increase in intake: 0.91 [95% CI, 0.82-1.01] and 0.87 [95% CI, 0.78-0.98], respectively). However, maternal ADH1B genotype was not associated with asthma comparing carriers of A allele with persons homozygous for G allele (OR, 0.98 [95% CI, 0.66-1.47]) or hay fever (OR, 1.11 [95% CI, 0.71-1.72]), nor with any other atopic outcome.
Conclusion
We have found no evidence to suggest that prenatal alcohol exposure increases the risk of asthma or atopy in childhood.
doi:10.1016/j.jaci.2013.04.051
PMCID: PMC3884122  PMID: 23806636
Alcohol; ADH1B; Mendelian randomization; prenatal exposure; ALSPAC; pregnancy; birth cohort; asthma; atopy; ADH, Alcohol dehydrogenase; ALSPAC, Avon Longitudinal Study of Parents and Children (ALSPAC); GWAS, Genome Wide Association Study; PCA, Principal Components Analysis
4.  Glutathione-S-transferase genes and asthma phenotypes: a Human Genome Epidemiology (HuGE) systematic review and meta-analysis including unpublished data 
Background Oxidative stress is thought to be involved in the pathogenesis of asthma. Glutathione-S-transferase (GST) enzymes, which play an important role in antioxidant defences, may therefore influence asthma risk. Two common deletion polymorphisms of GSTM1 and GSTT1 genes and the GSTP1 Ile105Val polymorphism have been associated with asthma in children and adults, but results are inconsistent across studies.
Methods Systematic review and meta-analysis of the effects of GST genes on asthma, wheezing and bronchial hyper-responsiveness (BHR), with inclusion of unpublished data from three studies, including the large Avon Longitudinal Study of Parents and Children (ALSPAC). Random effect or fixed effect models were used as appropriate, and sensitivity analyses were performed to assess the impact of study characteristics and quality on pooled results.
Results The meta-analyses of GSTM1 (n = 22 studies) and GSTT1 (n = 19) showed increased asthma risk associated with the null genotype, but there was extreme between-study heterogeneity and publication bias and the association disappeared when meta-analysis was restricted to the largest studies. Meta-analysis of GSTP1 Ile105Val (n = 17) and asthma suggested a possible protective effect of the Val allele, but heterogeneity was extreme. Few studies evaluated wheezing and BHR and most reported no associations, although weak evidence was found for positive associations of GSTM1 null and GSTP1 Val allele with wheezing and a negative association of GSTP1 Val allele with BHR.
Conclusions Our findings do not support a substantial role of GST genes alone in the development of asthma. Future studies of large size should focus on interactions of GST genes with environmental oxidative exposures and with other genes involved in antioxidant pathways. Quality of study conduct and reporting needs to be improved to increase credibility of the evidence accumulating over time.
doi:10.1093/ije/dyp337
PMCID: PMC2846443  PMID: 20032267
Meta-analysis; systematic review; glutathione-S-transferase genes; GSTM1 gene; GSTT1 gene; GSTP1 gene; asthma; wheezing; bronchial responsiveness; The Avon Longitudinal Study of Parents and Children (ALSPAC)
5.  Prenatal Vitamin D Supplementation and Child Respiratory Health: A Randomised Controlled Trial 
PLoS ONE  2013;8(6):e66627.
Background
Observational studies suggest high prenatal vitamin D intake may be associated with reduced childhood wheezing. We examined the effect of prenatal vitamin D on childhood wheezing in an interventional study.
Methods
We randomised 180 pregnant women at 27 weeks gestation to either no vitamin D, 800 IU ergocalciferol daily until delivery or single oral bolus of 200,000 IU cholecalciferol, in an ethnically stratified, randomised controlled trial. Supplementation improved but did not optimise vitamin D status. Researchers blind to allocation assessed offspring at 3 years. Primary outcome was any history of wheeze assessed by validated questionnaire. Secondary outcomes included atopy, respiratory infection, impulse oscillometry and exhaled nitric oxide. Primary analyses used logistic and linear regression.
Results
We evaluated 158 of 180 (88%) offspring at age 3 years for the primary outcome. Atopy was assessed by skin test for 95 children (53%), serum IgE for 86 (48%), exhaled nitric oxide for 62 (34%) and impulse oscillometry of acceptable quality for 51 (28%). We found no difference between supplemented and control groups in risk of wheeze [no vitamin D: 14/50 (28%); any vitamin D: 26/108 (24%) (risk ratio 0.86; 95% confidence interval 0.49, 1.50; P = 0.69)]. There was no significant difference in atopy, eczema risk, lung function or exhaled nitric oxide between supplemented groups and controls.
Conclusion
Prenatal vitamin D supplementation in late pregnancy that had a modest effect on cord blood vitamin D level, was not associated with decreased wheezing in offspring at age three years.
Trial Registration
Controlled-Trials.com ISRCTN68645785
doi:10.1371/journal.pone.0066627
PMCID: PMC3691177  PMID: 23826104
6.  Effect of Five Genetic Variants Associated with Lung Function on the Risk of Chronic Obstructive Lung Disease, and Their Joint Effects on Lung Function 
Rationale: Genomic loci are associated with FEV1 or the ratio of FEV1 to FVC in population samples, but their association with chronic obstructive pulmonary disease (COPD) has not yet been proven, nor have their combined effects on lung function and COPD been studied.
Objectives: To test association with COPD of variants at five loci (TNS1, GSTCD, HTR4, AGER, and THSD4) and to evaluate joint effects on lung function and COPD of these single-nucleotide polymorphisms (SNPs), and variants at the previously reported locus near HHIP.
Methods: By sampling from 12 population-based studies (n = 31,422), we obtained genotype data on 3,284 COPD case subjects and 17,538 control subjects for sentinel SNPs in TNS1, GSTCD, HTR4, AGER, and THSD4. In 24,648 individuals (including 2,890 COPD case subjects and 13,862 control subjects), we additionally obtained genotypes for rs12504628 near HHIP. Each allele associated with lung function decline at these six SNPs contributed to a risk score. We studied the association of the risk score to lung function and COPD.
Measurements and Main Results: Association with COPD was significant for three loci (TNS1, GSTCD, and HTR4) and the previously reported HHIP locus, and suggestive and directionally consistent for AGER and TSHD4. Compared with the baseline group (7 risk alleles), carrying 10–12 risk alleles was associated with a reduction in FEV1 (β = –72.21 ml, P = 3.90 × 10−4) and FEV1/FVC (β = –1.53%, P = 6.35 × 10−6), and with COPD (odds ratio = 1.63, P = 1.46 × 10−5).
Conclusions: Variants in TNS1, GSTCD, and HTR4 are associated with COPD. Our highest risk score category was associated with a 1.6-fold higher COPD risk than the population average score.
doi:10.1164/rccm.201102-0192OC
PMCID: PMC3398416  PMID: 21965014
FEV1; FVC; genome-wide association study; modeling risk
7.  DNA Methylation Patterns in Cord Blood DNA and Body Size in Childhood 
PLoS ONE  2012;7(3):e31821.
Background
Epigenetic markings acquired in early life may have phenotypic consequences later in development through their role in transcriptional regulation with relevance to the developmental origins of diseases including obesity. The goal of this study was to investigate whether DNA methylation levels at birth are associated with body size later in childhood.
Principal Findings
A study design involving two birth cohorts was used to conduct transcription profiling followed by DNA methylation analysis in peripheral blood. Gene expression analysis was undertaken in 24 individuals whose biological samples and clinical data were collected at a mean ± standard deviation (SD) age of 12.35 (0.95) years, the upper and lower tertiles of body mass index (BMI) were compared with a mean (SD) BMI difference of 9.86 (2.37) kg/m2. This generated a panel of differentially expressed genes for DNA methylation analysis which was then undertaken in cord blood DNA in 178 individuals with body composition data prospectively collected at a mean (SD) age of 9.83 (0.23) years. Twenty-nine differentially expressed genes (>1.2-fold and p<10−4) were analysed to determine DNA methylation levels at 1–3 sites per gene. Five genes were unmethylated and DNA methylation in the remaining 24 genes was analysed using linear regression with bootstrapping. Methylation in 9 of the 24 (37.5%) genes studied was associated with at least one index of body composition (BMI, fat mass, lean mass, height) at age 9 years, although only one of these associations remained after correction for multiple testing (ALPL with height, pCorrected = 0.017).
Conclusions
DNA methylation patterns in cord blood show some association with altered gene expression, body size and composition in childhood. The observed relationship is correlative and despite suggestion of a mechanistic epigenetic link between in utero life and later phenotype, further investigation is required to establish causality.
doi:10.1371/journal.pone.0031821
PMCID: PMC3303769  PMID: 22431966

Results 1-7 (7)