PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
author:("Shah, visha")
1.  A Compact, High Performance Atomic Magnetometer for Biomedical Applications 
Physics in medicine and biology  2013;58(22):8153-8161.
We present a highly sensitive room-temperature atomic magnetometer (AM), designed for use in biomedical applications. The magnetometer sensor head is only 2×2×5 cm3 and is constructed using readily available, low-cost optical components. The magnetic field resolution of the AM is <10 fT/√Hz, which is comparable to cryogenically cooled superconducting quantum interference device (SQUID) magnetometers. We present side-by-side comparisons between our AM and a SQUID magnetometer, and show that equally high quality magnetoencephalography (MEG) and magnetocardiography (MCG) recordings can be obtained using our AM.
doi:10.1088/0031-9155/58/22/8153
PMCID: PMC3971838  PMID: 24200837
2.  Multiarticular Tophaceous Gout with Severe Joint Destruction: A Pictorial Overview with a Twist 
Indian Journal of Dermatology  2014;59(6):609-611.
Tophi are the visible dermatological signs of gout. A case of tophaceous gout in a middle-aged man with no other metabolic derangement is being presented with multiple tophi on the hands and feet overlying joints as well as on the fingers and toes. We thought it to be of educational value to demonstrate needle-like crystals of urate by polarizing microscopy. X-rays of hands and feet showed dramatic destructive changes. The patient presented with mottled hypopigmentation on anterior and posterior knees and dorsa of hands and feet where he applied hot “aankda” leaves and covered them with bandage resulting in irritant dermatitis with postinflammatory hypopigmentation. This proved to be a red herring in this case.
doi:10.4103/0019-5154.143538
PMCID: PMC4248503  PMID: 25484396
‘Aankda’ leaves; gout; mottled hypopigmentation; severe joint damage; tophi
3.  The Effect of Silver Nanoparticles on Seasonal Change in Arctic Tundra Bacterial and Fungal Assemblages 
PLoS ONE  2014;9(6):e99953.
The impact of silver nanoparticles (NPs) and microparticles (MPs) on bacterial and fungal assemblages was studied in soils collected from a low arctic site. Two different concentrations (0.066% and 6.6%) of Ag NPs and Ag MPs were tested in microcosms that were exposed to temperatures mimicking a winter to summer transition. Toxicity was monitored by differential respiration, phospholipid fatty acid analysis, polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequencing. Notwithstanding the effect of Ag MPs, nanosilver had an obvious, additional impact on the microbial community, underscoring the importance of particle size in toxicity. This impact was evidenced by levels of differential respiration in 0.066% Ag NP-treated soil that were only half that of control soils, a decrease in signature bacterial fatty acids, and changes in both richness and evenness in bacterial and fungal DNA sequence assemblages. Prominent after Ag NP-treatment were Hypocreales fungi, which increased to 70%, from only 1% of fungal sequences under control conditions. Genera within this Order known for their antioxidant properties (Cordyceps/Isaria) dominated the fungal assemblage after NP addition. In contrast, sequences attributed to the nitrogen-fixing Rhizobiales bacteria appeared vulnerable to Ag NP-mediated toxicity. This combination of physiological, biochemical and molecular studies clearly demonstrate that Ag NPs can severely disrupt the natural seasonal progression of tundra assemblages.
doi:10.1371/journal.pone.0099953
PMCID: PMC4057283  PMID: 24926877
4.  Pan-neuronal expression of APL-1, an APP-related protein, disrupts olfactory, gustatory and touch plasticity in C. elegans 
Patients with Alzheimer’s disease show age-related cognitive decline. Post-mortem autopsy of their brains shows the presence of large numbers of senile plaques, whose major component is the β-amyloid peptide. The β-amyloid peptide is a cleavage product of the amyloid precursor protein (APP). In addition to the neurodegeneration associated with β-amyloid aggregation in Alzheimer’s disease patients, mutations in APP in mammalian model organisms have also been shown to disrupt several behaviors independent of visible amyloid plaque formation. However, the pathways in which APP function are unknown and difficult to unravel in mammals. Here we show that pan-neuronal expression of APL-1, the Caenorhabditis elegans orthologue of APP, disrupts several behaviors, such as olfactory and gustatory learning behavior and touch habituation. These behaviors are mediated by distinct neural circuits, suggesting a broad impact of APL-1 on sensory plasticity in C. elegans. Furthermore, we found that disruption of these three behaviors requires activity of the insulin and TGFβ pathways. These results suggest pathways and molecular components that may underlie behavioral plasticity in mammals and in patients with Alzheimer’s disease.
doi:10.1523/JNEUROSCI.0495-12.2012
PMCID: PMC3698849  PMID: 22836251
C. elegans; apl-1; Alzheimer’s disease; habituation; chemotaxis; memory; avoidance plasticity; learning
5.  Pan-Neuronal Expression of APL-1, an APP-Related Protein, Disrupts Olfactory, Gustatory, and Touch Plasticity in Caenorhabditis elegans 
The Journal of Neuroscience  2012;32(30):10156-10169.
Patients with Alzheimer's disease show age-related cognitive decline. Postmortem autopsy of their brains shows the presence of large numbers of senile plaques, whose major component is the β-amyloid peptide. The β-amyloid peptide is a cleavage product of the amyloid precursor protein (APP). In addition to the neurodegeneration associated with β-amyloid aggregation in Alzheimer's disease patients, mutations in APP in mammalian model organisms have also been shown to disrupt several behaviors independent of visible amyloid plaque formation. However, the pathways in which APP function are unknown and difficult to unravel in mammals. Here we show that pan-neuronal expression of APL-1, the Caenorhabditis elegans ortholog of APP, disrupts several behaviors, such as olfactory and gustatory learning behavior and touch habituation. These behaviors are mediated by distinct neural circuits, suggesting a broad impact of APL-1 on sensory plasticity in C. elegans. Furthermore, we found that disruption of these three behaviors requires activity of the TGFβ pathway and reduced activity of the insulin pathway. These results suggest pathways and molecular components that may underlie behavioral plasticity in mammals and in patients with Alzheimer's disease.
doi:10.1523/JNEUROSCI.0495-12.2012
PMCID: PMC3698849  PMID: 22836251
6.  Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles 
PLoS ONE  2012;7(10):e47827.
Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO4, CaCl2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to understand the collective influence of the tested parameters on the anti-bacterial activity and subsequently a computer-based, interactive visualization tool was developed. The visualization allows us to elucidate the effect of each of the parameters in combination with other parameters, on the antibacterial activity of nanoparticles. The results indicate that the toxicity of CeO2 NPs depend on the physical and chemical environment; and in a majority of the possible combinations of the nine parameters, non-lethal to the bacteria. In fact, the cerium oxide nanoparticles can decrease the anti-bacterial activity exerted by magnesium and potassium salts.
doi:10.1371/journal.pone.0047827
PMCID: PMC3482233  PMID: 23110109
7.  Assessing the Impact of Copper and Zinc Oxide Nanoparticles on Soil: A Field Study 
PLoS ONE  2012;7(8):e42663.
It is not known if the annual production of tonnes of industrial nanoparticles (NPs) has the potential to impact terrestrial microbial communities, which are so necessary for ecosystem functioning. Here, we have examined the consequences of adding zero valent copper and zinc oxide NPs to soil in pots that were then maintained under field conditions. The fate of these NPs, as well as changes in the microbial communities, was monitored over 162 days. Both NP types traveled through the soil matrix, albeit at differential rates, with Cu NPs retained in the soil matrix at a higher rate compared to ZnO NPs. Leaching of Cu and Zn ions from the parent NPs was also observed as a function of time. Analysis of microbial communities using culture-dependent and independent methods clearly indicated that Cu and ZnO NPs altered the microbial community structure. In particular, two orders of organisms found in rhizosphere, Flavobacteriales and Sphingomonadales, appeared to be particularly susceptible to the presence of NPs. Together, the migration of NPs through soil matrix and the ability of these potential pollutants to influence the composition of microbial community in this field study, cannot help but raise some environmental concerns.
doi:10.1371/journal.pone.0042663
PMCID: PMC3414451  PMID: 22905159
8.  Bacterial and Archaea Community Present in the Pine Barrens Forest of Long Island, NY: Unusually High Percentage of Ammonia Oxidizing Bacteria 
PLoS ONE  2011;6(10):e26263.
Of the few preserved areas in the northeast of United States, the soil in the Pine Barrens Forests presents a harsh environment for the microorganisms to grow and survive. In the current study we report the use of clustering methods to scientifically select the sampling locations that would represent the entire forest and also report the microbial diversity present in various horizons of the soil. Sixty six sampling locations were selected across the forest and soils were collected from three horizons (sampling depths). The three horizons were 0–10 cm (Horizon O); 11–25 cm (Horizon A) and 26–40 cm (Horizon B). Based on the total microbial substrate utilization pattern and K-means clustering analysis, the soil in the Pine Barrens Forest can be classified into four distinct clusters at each of the three horizons. One soil sample from each of the four clusters were selected and archaeal and bacterial populations within the soil studied using pyrosequencing method. The results show the microbial communities present in each of these clusters are different. Within the microbial communities present, microorganisms involved in nitrogen cycle occupy a major fraction of microbial community in the soil. High level of diversity was observed for nitrogen fixing bacteria. In contrast, Nitrosovibrio and Nitrosocaldus spp are the single bacterial and archaeal population respectively carrying out ammonia oxidation in the soil.
doi:10.1371/journal.pone.0026263
PMCID: PMC3197628  PMID: 22028845
9.  Comparison of Proteomic and Transcriptomic Profiles in the Bronchial Airway Epithelium of Current and Never Smokers 
PLoS ONE  2009;4(4):e5043.
Background
Although prior studies have demonstrated a smoking-induced field of molecular injury throughout the lung and airway, the impact of smoking on the airway epithelial proteome and its relationship to smoking-related changes in the airway transcriptome are unclear.
Methodology/Principal Findings
Airway epithelial cells were obtained from never (n = 5) and current (n = 5) smokers by brushing the mainstem bronchus. Proteins were separated by one dimensional polyacrylamide gel electrophoresis (1D-PAGE). After in-gel digestion, tryptic peptides were processed via liquid chromatography/ tandem mass spectrometry (LC-MS/MS) and proteins identified. RNA from the same samples was hybridized to HG-U133A microarrays. Protein detection was compared to RNA expression in the current study and a previously published airway dataset. The functional properties of many of the 197 proteins detected in a majority of never smokers were similar to those observed in the never smoker airway transcriptome. LC-MS/MS identified 23 proteins that differed between never and current smokers. Western blotting confirmed the smoking-related changes of PLUNC, P4HB1, and uteroglobin protein levels. Many of the proteins differentially detected between never and current smokers were also altered at the level of gene expression in this cohort and the prior airway transcriptome study. There was a strong association between protein detection and expression of its corresponding transcript within the same sample, with 86% of the proteins detected by LC-MS/MS having a detectable corresponding probeset by microarray in the same sample. Forty-one proteins identified by LC-MS/MS lacked detectable expression of a corresponding transcript and were detected in ≤5% of airway samples from a previously published dataset.
Conclusions/Significance
1D-PAGE coupled with LC-MS/MS effectively profiled the airway epithelium proteome and identified proteins expressed at different levels as a result of cigarette smoke exposure. While there was a strong correlation between protein and transcript detection within the same sample, we also identified proteins whose corresponding transcripts were not detected by microarray. This noninvasive approach to proteomic profiling of airway epithelium may provide additional insights into the field of injury induced by tobacco exposure.
doi:10.1371/journal.pone.0005043
PMCID: PMC2664466  PMID: 19357784
10.  Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium 
BMC Genomics  2008;9:259.
Background
Cigarette smoking is a leading cause of preventable death and a significant cause of lung cancer and chronic obstructive pulmonary disease. Prior studies have demonstrated that smoking creates a field of molecular injury throughout the airway epithelium exposed to cigarette smoke. We have previously characterized gene expression in the bronchial epithelium of never smokers and identified the gene expression changes that occur in the mainstem bronchus in response to smoking. In this study, we explored relationships in whole-genome gene expression between extrathorcic (buccal and nasal) and intrathoracic (bronchial) epithelium in healthy current and never smokers.
Results
Using genes that have been previously defined as being expressed in the bronchial airway of never smokers (the "normal airway transcriptome"), we found that bronchial and nasal epithelium from non-smokers were most similar in gene expression when compared to other epithelial and nonepithelial tissues, with several antioxidant, detoxification, and structural genes being highly expressed in both the bronchus and nose. Principle component analysis of previously defined smoking-induced genes from the bronchus suggested that smoking had a similar effect on gene expression in nasal epithelium. Gene set enrichment analysis demonstrated that this set of genes was also highly enriched among the genes most altered by smoking in both nasal and buccal epithelial samples. The expression of several detoxification genes was commonly altered by smoking in all three respiratory epithelial tissues, suggesting a common airway-wide response to tobacco exposure.
Conclusion
Our findings support a relationship between gene expression in extra- and intrathoracic airway epithelial cells and extend the concept of a smoking-induced field of injury to epithelial cells that line the mouth and nose. This relationship could potentially be utilized to develop a non-invasive biomarker for tobacco exposure as well as a non-invasive screening or diagnostic tool providing information about individual susceptibility to smoking-induced lung diseases.
doi:10.1186/1471-2164-9-259
PMCID: PMC2435556  PMID: 18513428
11.  Sophorolipids Having Enhanced Antibacterial Activity▿ 
doi:10.1128/AAC.01118-06
PMCID: PMC1797649  PMID: 17088495
12.  Sophorolipids, Microbial Glycolipids with Anti-Human Immunodeficiency Virus and Sperm-Immobilizing Activities 
Antimicrobial Agents and Chemotherapy  2005;49(10):4093-4100.
The increased incidence of human immunodeficiency virus (HIV)/AIDS disease in women aged 15 to 49 years has identified the urgent need for a female-controlled, efficacious, and safe vaginal topical microbicide. To meet this challenge, sophorolipid (SL) produced by Candida bombicola and its structural analogs have been studied in this report for their spermicidal, anti-HIV, and cytotoxic activities. The sophorolipid diacetate ethyl ester derivative is the most potent spermicidal and virucidal agent of the series of SLs studied. Its virucidal activity against HIV and sperm-immobilizing activity against human semen are similar to those of nonoxynol-9. However, it also induced enough vaginal cell toxicity to raise concerns about its applicability for long-term microbicidal contraception. Its structure-activity relationship has been established for creating new analogs with less cytotoxicity and higher activity.
doi:10.1128/AAC.49.10.4093-4100.2005
PMCID: PMC1251511  PMID: 16189085

Results 1-12 (12)