Search tips
Search criteria

Results 1-22 (22)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
2.  Functional Characterization of KIN-32, the Caenorhabditis elegans Homolog of Focal Adhesion Kinase 
We have identified the single Caenorhabditis elegans focal adhesion kinase (FAK) homolog KIN-32, which has the signature FAK structure including an N-terminal Four.1-Ezrin-Radixin-Moesin (FERM) domain followed by a tyrosine kinase domain and a C-terminal domain with weak homology to the focal adhesion targeting domain. The functional requirements for KIN-32 were examined using RNA interference depletion experiments and analysis of a deletion allele, kin-32(ok166), in which a large segment of the FERM domain is missing. Our results show that reduced levels of expression or absence of the FERM domain do not affect viability, fertility, or anatomy in C. elegans. Expression of an analogous FERM deletion in mouse FAK showed kinase activity in vitro and supported normal focal adhesion localization in cell culture. Thus, the FERM domain of KIN-32, and possibly KIN-32 activity in general, appears to be dispensable for normal C. elegans physiology.
PMCID: PMC3937857  PMID: 18297732
FERM; kinase; nematode; RNAi; FAK
3.  Reversible Modulation of Myofibroblast Differentiation in Adipose-Derived Mesenchymal Stem Cells 
PLoS ONE  2014;9(1):e86865.
Unregulated activity of myofibroblasts, highly contractile cells that deposit abundant extracellular matrix (ECM), leads to fibrosis. To study the modulation of myofibroblast activity, we used human adipose-derived mesenchymal stem cells (ADSCs), which have much potential in regenerative medicine. We found that ADSCs treated with TGF-β developed a myofibroblastic phenotype with increases in α-smooth muscle actin (α-SMA), a myofibroblast marker, and ECM proteins type I collagen and fibronectin. In contrast, treatment with bFGF had the opposite effect. bFGF-differentiated ADSCs showed marked down-regulation of α-SMA expression, collagen I, and fibronectin, and loss of focal adhesions and stress fibers. Functionally, bFGF-differentiated ADSCs were significantly more migratory, which correlated with up-regulation of tenascin-C, an anti-adhesive ECM protein, and vimentin, a pro-migratory cytoskeletal protein. On the other hand, TGF-β-differentiated ADSCs were significantly more contractile than bFGF-differentiated cells. Interestingly, cells completely reversed their morphologies, marker expression, signaling pathways, and contractility versus migratory profiles when switched from culture with one growth factor to the other, demonstrating that the myofibroblast differentiation process is not terminal. Cell differentiation was associated with activation of Smad2 downstream of TGF-β and of ERK/MAP kinase downstream of bFGF. Reversibility of the TGF-β-induced myofibroblastic phenotype depends, in part, on bFGF-induced ERK/MAP kinase signaling. These findings show that ADSC differentiation into myofibroblasts and re-differentiation into fibroblast-like cells can be manipulated with growth factors, which may have implications in the development of novel therapeutic strategies to reduce the risk of fibrosis.
PMCID: PMC3900664  PMID: 24466271
4.  Endogenous production of fibronectin is required for self-renewal of cultured mouse embryonic stem cells 
Experimental cell research  2012;318(15):1820-1831.
Pluripotent cells are attached to the extracellular matrix (ECM) as they make cell fate decisions within the stem cell niche. Here we show that the ubiquitous ECM protein fibronectin is required for self-renewal decisions by cultured mouse embryonic stem (mES) cells. Undifferentiated mES cells produce fibronectin and assemble a fibrillar matrix. Increasing the level of substrate fibronectin increased cell spreading and integrin receptor signaling through focal adhesion kinase, while concomitantly inducing the loss of Nanog and Oct4 self-renewal markers. Conversely, reducing fibronectin production by mES cells growing on a feeder-free gelatin substrate caused loss of cell adhesion, decreased integrin signaling, and decreased expression of self-renewal markers. These effects were reversed by providing the cells with exogenous fibronectin, thereby restoring adhesion to the gelatin substrate. Interestingly, mES cells do not adhere directly to the gelatin substrate, but rather adhere indirectly through gelatin-bound fibronectin, which facilitates self-renewal via its effects on cell adhesion. These results provide new insights into the mechanism of regulation of self-renewal by growth on a gelatin-coated surface. The effects of increasing or decreasing fibronectin levels show that self-renewal depends on an intermediate level of cell-fibronectin interactions. By providing cell adhesive signals that can act with other self-renewal factors to maintain mES cell pluripotency, fibronectin is therefore a necessary component of the self-renewal signaling pathway in culture.
PMCID: PMC3582329  PMID: 22710062
extracellular matrix; fibronectin; integrin; self-renewal; embryonic stem cell
5.  mig-38, a novel gene that regulates distal tip cell turning during gonadogenesis in C. elegans hermaphrodites 
Developmental biology  2012;368(2):404-414.
In Caenorhabditis elegans gonad morphogenesis, the final U-shapes of the two hermaphrodite gonad arms are determined by migration of the distal tip cells (DTCs). These somatic cells migrate in opposite directions on the ventral basement membrane until specific extracellular cues induce turning from ventral to dorsal and then centripetally toward the midbody region on the dorsal basement membrane. To dissect the mechanism of DTC turning, we examined the role of a novel gene, F40F11.2/mig-38, whose depletion by RNAi results in failure of DTC turning so that DTCs continue their migration away from the midbody region. mig-38 is expressed in the gonad primordium, and expression continues throughout DTC migration where it acts cell-autonomously to control DTC turning. RNAi depletion of both mig-38 and ina-1, which encodes an integrin adhesion receptor, enhanced the loss of turning phenotype indicating a genetic interaction between these genes. Furthermore, the integrin-associated protein MIG-15/Nck-interacting kinase (NIK) works with MIG-38 to direct DTC turning as shown by mig-38 RNAi with the mig-15(rh80) hypomorph. These results indicate that MIG-38 enhances the role of MIG-15 in integrin-dependent DTC turning. Knockdown of talin, a protein that is important for integrin activation, causes the DTCs to stop migration prematurely. When both talin and MIG-38 were depleted by RNAi treatment, the premature stop phenotype was suppressed. This suppression effect was reversed upon additional depletion of MIG-15 or its binding partner NCK-1. These results suggest that both talin and the MIG-15/NCK-1 complex promote DTC motility and that MIG-38 may act as a negative regulator of the complex. We propose a model to explain the dual role of MIG-38 in motility and turning.
PMCID: PMC3697129  PMID: 22732572
Cell migration; Distal tip cell; C. elegans; Hermaphrodite gonadogenesis; mig-38; Integrin
6.  Fibronectins, Their Fibrillogenesis, and In Vivo Functions 
Fibronectin (FN) is a multidomain protein with the ability to bind simultaneously to cell surface receptors, collagen, proteoglycans, and other FN molecules. Many of these domains and interactions are also involved in the assembly of FN dimers into a multimeric fibrillar matrix. When, where, and how FN binds to its various partners must be controlled and coordinated during fibrillogenesis. Steps in the process of FN fibrillogenesis including FN self-association, receptor activities, and intracellular pathways have been under intense investigation for years. In this review, the domain organization of FN including the extra domains and variable region that are controlled by alternative splicing are described. We discuss how FN–FN and cell–FN interactions play essential roles in the initiation and progression of matrix assembly using complementary results from cell culture and embryonic model systems that have enhanced our understanding of this process.
Formation of fibrillar fibronectin matrices involves interactions with cell surface integrins that induce fibronectin conformational changes required for self-association. Cell culture and embryonic model systems have provided key insights into the mechanisms that initiate and regulate the fibronectin assembly process.
PMCID: PMC3119908  PMID: 21576254
7.  Assembly of Fibronectin Extracellular Matrix 
In the process of matrix assembly, multivalent extracellular matrix (ECM) proteins are induced to self-associate and to interact with other ECM proteins to form fibrillar networks. Matrix assembly is usually initiated by ECM glycoproteins binding to cell surface receptors, such as fibronectin (FN) dimers binding to α5β1 integrin. Receptor binding stimulates FN self-association mediated by the N-terminal assembly domain and organizes the actin cytoskeleton to promote cell contractility. FN conformational changes expose additional binding sites that participate in fibril formation and in conversion of fibrils into a stabilized, insoluble form. Once assembled, the FN matrix impacts tissue organization by contributing to the assembly of other ECM proteins. Here, we describe the major steps, molecular interactions, and cellular mechanisms involved in assembling FN dimers into fibrillar matrix while highlighting important issues and major questions that require further investigation.
PMCID: PMC3628685  PMID: 20690820
integrins; conformational change; insolubility; fibrillar; type I collagen; microfibrils
8.  Gonad morphogenesis and distal tip cell migration in the Caenorhabditis elegans hermaphrodite 
Cell migration and morphogenesis are key events in tissue development and organogenesis. In Caenorhabditis elegans, the migratory path of the distal tip cells determines the morphology of the hermaphroditic gonad. The distal tip cells undergo a series of migratory phases interspersed with turns to form the gonad. A wide variety of genes have been identified as crucial to this process, from genes that encode components and modifiers of the extracellular matrix to signaling proteins and transcriptional regulators. The connections between extracellular and transmembrane protein functions and intracellular pathways are essential for distal tip cell migration, and the integration of this information governs gonad morphogenesis and determines gonad size and shape.
PMCID: PMC3614366  PMID: 23559979
9.  Analysis of Cell Migration Using Caenorhabditis elegans as a Model System 
The nematode Caenorhabditis elegans is an excellent model system in which to study long-distance cell migration in vivo. This chapter describes methods used to study a subset of migratory cells in the hermaphrodite nematode, the distal tip cells. These methods take advantage of the organism’s transparent body and the expression of green fluorescent protein to observe cell migration and behavior. Additionally, the availability of nematode mutants and gene knockdown techniques that affect cell migration allow the analysis and comparison of wild-type and aberrant migratory paths. Methods for nematode growth and maintenance, strain acquisition, observation and live imaging, gene knockdown, and analysis of cell migration defects are covered.
PMCID: PMC3601446  PMID: 21748680
C. elegans; Cell migration; Mutants; RNAi; Distal tip cells; Live imaging; Green fluorescent protein
10.  Fibronectins, Their Fibrillogenesis, and In Vivo Functions 
Cold Spring Harbor perspectives in biology  2011;3(7):10.1101/cshperspect.a005041 a005041.
Fibronectin (FN) is a multidomain protein with the ability to bind simultaneously to cell surface receptors, collagen, proteoglycans, and other FN molecules. Many of these domains and interactions are also involved in the assembly of FN dimers into a multimeric fibrillar matrix. When, where, and how FN binds to its various partners must be controlled and coordinated during fibrillogenesis. Steps in the process of FN fibrillogenesis including FN self-association, receptor activities, and intracellular pathways have been under intense investigation for years. In this review, the domain organization of FN including the extra domains and variable region that are controlled by alternative splicing are described. We discuss how FN–FN and cell–FN interactions play essential roles in the initiation and progression of matrix assembly using complementary results from cell culture and embryonic model systems that have enhanced our understanding of this process.
PMCID: PMC3119908  PMID: 21576254
11.  Temporal and spatial regulation of integrins during development 
Current opinion in cell biology  2008;20(5):520-524.
Integrin receptors for extracellular matrix (ECM) are critical determinants of biological processes. Regulation of integrin expression is one way for cells to respond to changes in the ECM, to integrate intracellular signals, and to obtain appropriate adhesion for cell motility, proliferation, and differentiation. Transcriptional and post-translational mechanisms for changing the integrin repertoire at the cell surface have recently been described. These mechanisms work through transcriptional regulation that alters the proportions of one integrin relative to another, referred to as integrin switching, or through localized regulation of integrin-ECM interactions, thus providing exquisite control over cell rearrangements during tissue morphogenesis and remodeling. These integrin regulatory pathways may also be important targets in such emerging fields as tissue engineering and regenerative medicine.
PMCID: PMC2572561  PMID: 18603422
12.  Fibronectin Expression Modulates Mammary Epithelial Cell Proliferation during Acinar Differentiation 
Cancer research  2008;68(9):3185-3192.
The mammary gland consists of a polarized epithelium surrounded by a basement membrane matrix that forms a series of branching ducts ending in hollow, sphere-like acini. Essential roles for the epithelial basement membrane during acinar differentiation, in particular laminin and its integrin receptors, have been identified using mammary epithelial cells cultured on a reconstituted basement membrane. Contributions from fibronectin, which is abundant in the mammary gland during development and tumorigenesis, have not been fully examined. Here, we show that fibronectin expression by mammary epithelial cells is dynamically regulated during the morphogenic process. Experiments with synthetic polyacrylamide gel substrates implicate both specific extracellular matrix components, including fibronectin itself, and matrix rigidity in this regulation. Alterations in fibronectin levels perturbed acinar organization. During acinar development, increased fibronectin levels resulted in overproliferation of mammary epithelial cells and increased acinar size. Addition of fibronectin to differentiated acini stimulated proliferation and reversed growth arrest of mammary epithelial cells negatively affecting maintenance of proper acinar morphology. These results show that expression of fibronectin creates a permissive environment for cell growth that antagonizes the differentiation signals from the basement membrane. These effects suggest a link between fibronectin expression and epithelial cell growth during development and oncogenesis in the mammary gland.
PMCID: PMC2748963  PMID: 18451144
13.  Requirements for sulfate transport and the diastrophic dysplasia sulfate transporter in fibronectin matrix assembly 
The Journal of Cell Biology  2007;179(5):999-1009.
Diastrophic dysplasia sulfate transporter (DTDST) is a sulfate/chloride antiporter whose function is impaired in several human chondrodysplasias. We show that DTDST is upregulated by dexamethasone stimulation of HT1080 fibrosarcoma cells and is required for fibronectin (FN) extracellular matrix deposition by these cells. DTDST imports sulfate for the modification of glycosaminoglycans. We find that N-sulfation of these chains is important for FN matrix assembly and that sulfation of cell surface proteoglycans is reduced in the absence of DTDST. Of the candidate HT1080 cell surface proteoglycans, only loss of syndecan-2 compromises FN assembly, as shown by syndecan-2 small interfering RNA knockdown. DTDST is both necessary and sufficient to induce FN matrix assembly in HT1080 cells. Knockdown of DTDST ablates FN matrix, whereas its overexpression increases assembly without dexamethasone stimulation. These results identify a previously unrecognized regulatory pathway for matrix assembly via modulation of a sulfate transporter and proteoglycan sulfation. These data raise the possibility that FN assembly defects contribute to chondrodysplasias.
PMCID: PMC2099202  PMID: 18056413
14.  Nanomaterials can Dynamically Steer Cell Responses to Biological Ligands 
Traditional tissue regeneration approaches to activate cell behaviours on biomaterials rely on the use of extracellular matrix based or soluble growth factor cues. In this article, we highlight a novel approach to dynamically steer cellular phenomena such as cell motility based on nanoscale substratum features of biological ligands. Albumin derived nanocarriers (ANCs) of variable nanoscale size features were functionalized with fibronectin III9–10 matrix ligand and effects on primary human keratinocyte activation were investigated. The display of fibronectin fragment from ANCs significantly enhanced cell migration compared to free ligands at equivalent concentrations. Notably, cell migration was influenced by the size of underlying ANCs even for variably sized ANCs presenting comparable levels of fibronectin fragment. For equivalent ligand concentrations, cell migration on the smaller-sized ANCs (30 nm and 50 nm) was significantly more enhanced compared to that on larger-sized ANCs (75 nm and 100 nm). In contrast, the enhancement of cell migration on nanocarriers was abolished by the use of immobilized biofunctionalized ANCs, indicating that “dynamic” nanocarrier internalization events underlie the role of nanocarrier geometry on the differential regulation of cell migration kinetics. Uptake studies using fluorescent ANCs indicated that larger-sized ANCs showed delayed endocytic kinetics and hence could present barriers for internalization during the cell adhesion and motility processes. Motile cells exhibited diminished migration upon exposure to clathrin-inhibitors, but not caveolin-inhibitors, suggesting the role of clathrin-mediated endocytosis in facilitating cell migratory responsiveness to the nanocarriers. Overall, a monotonic relationship was found between the degree of nanocarrier cytointernalization rate and cell migration rate, suggesting the possibility of designing biointerfacial features for dynamic control of cell migration. Thus, the major findings of this study are that (a) the presentation of a biorelevant ligand on a mobile nanocarrier can be used to sensitize cellular motility activation to the adhesion ligands; and (b) such nanocarrier interfaces can dynamically attune cell migration kinetics by “modulating” the uptake of the ligand-nanocarrier complex via nanocarrier size.
PMCID: PMC3335745  PMID: 21213389
nanocomposites; cell motility; nanobiotechnology; biological interfaces
15.  A novel fibronectin binding site required for fibronectin fibril growth during matrix assembly 
The Journal of Cell Biology  2001;154(5):1081-1088.
Fibronectin (FN) assembly into a fibrillar extracellular matrix is a stepwise process requiring participation from multiple FN domains. Fibril formation is regulated in part by segments within the first seven type III repeats (III1–7). To define the specific function(s) of this region, recombinant FNs (recFNs) containing an overlapping set of deletions were tested for the ability to assemble into fibrils. Surprisingly, recFN lacking type III repeat III1 (FNΔIII1), which contains a cryptic FN binding site and has been suggested to be essential for fibril assembly, formed a matrix identical in all respects to a native FN matrix. Similarly, displacement of the cell binding domain in repeats III9–10 to a position close to the NH2-terminal assembly domain, as well as a large deletion spanning repeats III4–7, had no effect on assembly. In contrast, two deletions that included repeat III2, ΔIII1–2 and ΔIII2–5, caused significant reductions in fibril elongation, although binding of FN to the cell surface and initiation of assembly still proceeded. Using individual repeats in binding assays, we show that III2 but not III1 contains an FN binding site. Thus, these results pinpoint repeat III2 as an important module for FN–FN interactions during fibril growth.
PMCID: PMC2196193  PMID: 11535624
fibronectin; matrix assembly; type III repeats; RGD sequence; self-association
16.  A Shared Mechanism of Adhesion Modulation for Tenascin-C and Fibulin-1 
Molecular Biology of the Cell  2009;20(4):1141-1149.
Adhesion modulatory proteins are important effectors of cell–matrix interactions during tissue remodeling and regeneration. They comprise a diverse group of matricellular proteins that confer antiadhesive properties to the extracellular matrix (ECM). We compared the inhibitory effects of two adhesion modulatory proteins, fibulin-1 and tenascin-C, both of which bind to the C-terminal heparin-binding (HepII) domain of fibronectin (FN) but are structurally distinct. Here, we report that, like tenascin-C, fibulin-1 inhibits fibroblast spreading and cell-mediated contraction of a fibrin–FN matrix. These proteins act by modulation of focal adhesion kinase and extracellular signal-regulated kinase signaling. The inhibitory effects were bypassed by lysophosphatidic acid, an activator of RhoA GTPase. Fibroblast response to fibulin-1, similar to tenascin-C, was dependent on expression of the heparan sulfate proteoglycan syndecan-4, which also binds to the HepII domain. Therefore, blockade of HepII-mediated signaling by competitive binding of fibulin-1 or tenascin-C represents a shared mechanism of adhesion modulation among disparate modulatory proteins.
PMCID: PMC2642747  PMID: 19109427
Zirconium tetra(tert-butoxide) reacts with surface amide groups of polyamide nylon 6/6 to give (η2-amidate)zirconium complexes in high yield. These surface complexes react to bond the cell-adhesive peptide arginine-glycine-aspartic acid (RGD) to the polymer surface. A surface loading of 0.18 nmol/cm2 of RGD is achieved, which is 20−1000 times higher than previously reported attainable on natural or synthetic polymers by other strategies. Approximately 40% of the nylon surface is covered by the RGD which gives a surface that is both stable to hydrolysis and highly active for cell adhesion and spreading in vitro.
PMCID: PMC2569827  PMID: 17199287
18.  Coregulation of Fibronectin Signaling and Matrix Contraction by Tenascin-C and Syndecan-4 
Molecular Biology of the Cell  2004;15(12):5670-5677.
Syndecan-4 is a ubiquitously expressed heparan sulfate proteoglycan that modulates cell interactions with the extracellular matrix. It is transiently up-regulated during tissue repair by cells that mediate wound healing. Here, we report that syndecan-4 is essential for optimal fibroblast response to the three-dimensional fibrin-fibronectin provisional matrix that is deposited upon tissue injury. Interference with syndecan-4 function inhibits matrix contraction by preventing cell spreading, actin stress fiber formation, and activation of focal adhesion kinase and RhoA mediated-intracellular signaling pathways. Tenascin-C is an extracellular matrix protein that regulates cell response to fibronectin within the provisional matrix. Syndecan-4 is also required for tenascin-C action. Inhibition of syndecan-4 function suppresses tenascin-C activity and overexpression of syndecan-4 circumvents the effects of tenascin-C. In this way, tenascin-C and syndecan-4 work together to control fibroblast morphology and signaling and regulate events such as matrix contraction that are essential for efficient tissue repair.
PMCID: PMC532045  PMID: 15483051
19.  Book Review: Well Worth the Weight! 
Cell Biology Education  2003;2:16-17.
PMCID: PMC152787
20.  Tenascin-C Modulates Matrix Contraction via Focal Adhesion Kinase– and Rho-mediated Signaling Pathways 
Molecular Biology of the Cell  2002;13(10):3601-3613.
A provisional matrix consisting of fibrin and fibronectin (FN) is deposited at sites of tissue damage and repair. This matrix serves as a scaffold for fibroblast migration into the wound where these cells deposit new matrix to replace lost or damaged tissue and eventually contract the matrix to bring the margins of the wound together. Tenascin-C is expressed transiently during wound repair in tissue adjacent to areas of injury and contacts the provisional matrix in vivo. Using a synthetic model of the provisional matrix, we have found that tenascin-C regulates cell responses to a fibrin-FN matrix through modulation of focal adhesion kinase (FAK) and RhoA activation. Cells on fibrin-FN+tenascin-C redistribute their actin to the cell cortex, downregulate focal adhesion formation, and do not assemble a FN matrix. Cells surrounded by a fibrin-FN+tenascin-C matrix are unable to induce matrix contraction. The inhibitory effect of tenascin-C is circumvented by downstream activation of RhoA. FAK is also required for matrix contraction and the absence of FAK cannot be overcome by activation of RhoA. These observations show dual requirements for both FAK and RhoA activities during contraction of a fibrin-FN matrix. The effects of tenascin-C combined with its location around the wound bed suggest that this protein regulates fundamental processes of tissue repair by limiting the extent of matrix deposition and contraction to fibrin-FN-rich matrix in the primary wound area.
PMCID: PMC129969  PMID: 12388760
21.  Tenascin-C Suppresses Rho Activation 
The Journal of Cell Biology  2000;150(4):913-920.
Cell binding to extracellular matrix (ECM) components changes cytoskeletal organization by the activation of Rho family GTPases. Tenascin-C, a developmentally regulated matrix protein, modulates cellular responses to other matrix proteins, such as fibronectin (FN). Here, we report that tenascin-C markedly altered cell phenotype on a three-dimensional fibrin matrix containing FN, resulting in suppression of actin stress fibers and induction of actin-rich filopodia. This distinct morphology was associated with complete suppression of the activation of RhoA, a small GTPase that induces actin stress fiber formation. Enforced activation of RhoA circumvented the effects of tenascin. Effects of active Rho were reversed by a Rho inhibitor C3 transferase. Suppression of GTPase activation allows tenascin-C expression to act as a regulatory switch to reverse the effects of adhesive proteins on Rho function. This represents a novel paradigm for the regulation of cytoskeletal organization by ECM.
PMCID: PMC2175281  PMID: 10953015
tenascin-C; provisional matrix; fibronectin; Rho GTPase; filopodia
22.  Modulatory Roles for Integrin Activation and the Synergy Site of Fibronectin during Matrix Assembly 
Molecular Biology of the Cell  1997;8(12):2563-2573.
Initiation of fibronectin (FN) matrix assembly is dependent on specific interactions between FN and cell surface integrin receptors. Here, we show that de novo FN matrix assembly exhibits a slow phase during initiation of fibrillogenesis followed by a more rapid growth phase. Mn2+, which acts by enhancing integrin function, increased the rate of FN fibril growth, but only after the initial lag phase. The RGD cell-binding sequence in type III repeat 10 is an absolute requirement for initiation by α5β1 integrin. To investigate the role of the cell-binding synergy site in the adjacent repeat III9, a full-length recombinant FN containing a synergy mutation, FN(syn−), was tested for its ability to form fibrils. Mutation of this site drastically reduced FN assembly by CHOα5 cells. Only sparse short fibrils were formed even after prolonged incubation, indicating that FN(syn−) is defective in progression of the assembly process. These results show that the synergy site is essential for α5β1-mediated accumulation of a FN matrix. However, the incorporation of FN(syn−) into fibrils and the deoxycholate-insoluble matrix could be stimulated by Mn2+. Therefore, exogenous activation of integrin receptors can overcome the requirement for FN’s synergy site as well as modulate the rate of FN matrix formation.
PMCID: PMC25728  PMID: 9398676

Results 1-22 (22)