PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  The banana code—natural blend processing in the olfactory circuitry of Drosophila melanogaster 
Odor information is predominantly perceived as complex odor blends. For Drosophila melanogaster one of the most attractive blends is emitted by an over-ripe banana. To analyze how the fly's olfactory system processes natural blends we combined the experimental advantages of gas chromatography and functional imaging (GC-I). In this way, natural banana compounds were presented successively to the fly antenna in close to natural occurring concentrations. This technique allowed us to identify the active odor components, use these compounds as stimuli and measure odor-induced Ca2+ signals in input and output neurons of the Drosophila antennal lobe (AL), the first olfactory neuropil. We demonstrate that mixture interactions of a natural blend are very rare and occur only at the AL output level resulting in a surprisingly linear blend representation. However, the information regarding single components is strongly modulated by the olfactory circuitry within the AL leading to a higher similarity between the representation of individual components and the banana blend. This observed modulation might tune the olfactory system in a way to distinctively categorize odor components and improve the detection of suitable food sources. Functional GC-I thus enables analysis of virtually any unknown natural odorant blend and its components in their relative occurring concentrations and allows characterization of neuronal responses of complete neural assemblies. This technique can be seen as a valuable complementary method to classical GC/electrophysiology techniques, and will be a highly useful tool in future investigations of insect-insect and insect-plant chemical interactions.
doi:10.3389/fphys.2014.00059
PMCID: PMC3929855  PMID: 24600405
Drosophila; gas chromatography; in vivo calcium imaging; olfaction; blend coding; insect antennal lobe
2.  Plant odorants interfere with detection of sex pheromone signals by male Heliothis virescens 
In many insects, mate finding relies on female-released sex pheromones, which have to be deciphered by the male olfactory system within an odorous background of plant volatiles present in the environment of a calling female. With respect to pheromone-mediated mate localization, plant odorants may be neutral, favorable, or disturbing. Here we examined the impact of plant odorants on detection and coding of the major sex pheromone component, (Z)-11-hexadecenal (Z11-16:Ald) in the noctuid moth Heliothis virescens. By in vivo imaging the activity in the male antennal lobe (AL), we monitored the interference at the level of olfactory sensory neurons (OSN) to illuminate mixture interactions. The results show that stimulating the male antenna with Z11-16:Ald and distinct plant-related odorants simultaneously suppressed pheromone-evoked activity in the region of the macroglomerular complex (MGC), where Z11-16:Ald-specific OSNs terminate. Based on our previous findings that antennal detection of Z11-16:Ald involves an interplay of the pheromone binding protein (PBP) HvirPBP2 and the pheromone receptor (PR) HR13, we asked if the plant odorants may interfere with any of the elements involved in pheromone detection. Using a competitive fluorescence binding assay, we found that the plant odorants neither bind to HvirPBP2 nor affect the binding of Z11-16:Ald to the protein. However, imaging experiments analyzing a cell line that expressed the receptor HR13 revealed that plant odorants significantly inhibited the Z11-16:Ald-evoked calcium responses. Together the results indicate that plant odorants can interfere with the signaling process of the major sex pheromone component at the receptor level. Consequently, it can be assumed that plant odorants in the environment may reduce the firing activity of pheromone-specific OSNs in H. virescens and thus affect mate localization.
doi:10.3389/fncel.2012.00042
PMCID: PMC3465774  PMID: 23060749
pheromone detection; antennal lobe; pheromone receptor; pheromone binding protein; olfaction
3.  Perceptual and Neural Olfactory Similarity in Honeybees 
PLoS Biology  2005;3(4):e60.
The question of whether or not neural activity patterns recorded in the olfactory centres of the brain correspond to olfactory perceptual measures remains unanswered. To address this question, we studied olfaction in honeybees Apis mellifera using the olfactory conditioning of the proboscis extension response. We conditioned bees to odours and tested generalisation responses to different odours. Sixteen odours were used, which varied both in their functional group (primary and secondary alcohols, aldehydes and ketones) and in their carbon-chain length (from six to nine carbons).The results obtained by presentation of a total of 16 × 16 odour pairs show that (i) all odorants presented could be learned, although acquisition was lower for short-chain ketones; (ii) generalisation varied depending both on the functional group and the carbon-chain length of odours trained; higher generalisation was found between long-chain than between short-chain molecules and between groups such as primary and secondary alcohols; (iii) for some odour pairs, cross-generalisation between odorants was asymmetric; (iv) a putative olfactory space could be defined for the honeybee with functional group and carbon-chain length as inner dimensions; (v) perceptual distances in such a space correlate well with physiological distances determined from optophysiological recordings of antennal lobe activity. We conclude that functional group and carbon-chain length are inner dimensions of the honeybee olfactory space and that neural activity in the antennal lobe reflects the perceptual quality of odours.
Training thousands of bees uncovers the chemical characteristics they use to discriminate between odours and reveals how the perception of odour correlates with specific neural activity in their brain
doi:10.1371/journal.pbio.0030060
PMCID: PMC1043859  PMID: 15736975

Results 1-3 (3)