Search tips
Search criteria

Results 1-16 (16)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Effect of metallo-β-lactamase production and multidrug resistance on clinical outcomes in patients with Pseudomonas aeruginosa bloodstream infection: a retrospective cohort study 
BMC Infectious Diseases  2013;13:515.
Blood stream infections (BSI) with Pseudomonas aeruginosa lead to poor clinical outcomes. The worldwide emergence and spread of metallo-β-lactamase (MBL) producing, often multidrug-resistant organisms may further aggravate this problem. Our study aimed to investigate the effect of MBL-producing P. aeruginosa (MBL-PA) and various other resistance phenotypes on clinical outcomes.
A retrospective cohort study was conducted in three German hospitals. Medical files from 2006 until 2012 were studied, and a number of 113 patients with P. aeruginosa BSI were included. The presence of VIM, IMP and NDM genes was detected using molecular techniques. Genetic relatedness was assessed through multilocus sequence typing (MLST). The effect of resistance patterns or MBL production on clinical outcomes was investigated by using multivariate Cox regression models.
In-hospital mortality was significantly higher in patients with MBL-PA and multidrug-resistant P. aeruginosa. However, neither BSI with MBL-PA nor BSI with various resistance phenotypes of P. aeruginosa were independently associated with mortality or length of hospital stay. In multivariate models, the SAPS II score (HR 1.046), appropriate definitive treatment (HR range 0.25-0.26), and cardiovascular disease (HR range 0.44-0.46) were independent predictors of mortality. Concomitant infections were associated with an excess length of stay (HR < 1).
Medication with appropriate antimicrobial agents at any time during the course of infection remains the key for improving clinical outcomes in patients with P. aeruginosa BSI and should be combined with a strict implementation of routine infection control measures.
PMCID: PMC3818928  PMID: 24176052
Bacteremia; Antimicrobial therapy; Mortality; Prognosis; Length of stay; MBL
2.  Time Series Analysis as a Tool To Predict the Impact of Antimicrobial Restriction in Antibiotic Stewardship Programs Using the Example of Multidrug-Resistant Pseudomonas aeruginosa 
The association between antimicrobial consumption and resistance in nonfermentative Gram-negative bacteria is well-known. Antimicrobial restriction, implemented in clinical routines by antibiotic stewardship programs (ASPs), is considered a means to reduce resistance rates. Whether and how antimicrobial restriction can accomplish this goal is still unknown though. This leads to an element of uncertainty when designing strategies for ASPs. From January 2002 until December 2011, an observational study was performed at the University Hospital Tübingen, Tübingen, Germany, to investigate the association between antimicrobial use and resistance rates in Pseudomonas aeruginosa. Transfer function models were used to determine such associations and to simulate antimicrobial restriction strategies. Various positive associations between antimicrobial consumption and resistance were observed in our setting. Surprisingly, impact estimations of different antimicrobial restriction strategies revealed relatively low intervention expenses to effectively attenuate the observed increase in resistance. For example, a simulated intervention of an annual 4% reduction in the use of meropenem over 3 years from 2009 until 2011 yielded a 62.5% attenuation (95% confidence interval, 15% to 110%) in the rising trend of multidrug-resistant Pseudomonas aeruginosa (three- and four-class-resistant P. aeruginosa [34MRGN-PA]). Time series analysis models derived from past data may be a tool to predict the outcome of antimicrobial restriction strategies, and could be used to design ASPs.
PMCID: PMC3623362  PMID: 23380719
3.  A Screening Assay Based on Host-Pathogen Interaction Models Identifies a Set of Novel Antifungal Benzimidazole Derivatives▿ 
Antimicrobial Agents and Chemotherapy  2011;55(10):4789-4801.
Fungal infections are a serious health problem in clinics, especially in the immune-compromised patient. Disease ranges from widespread superficial infections like vulvovaginal infections to life-threatening systemic candidiasis. Especially for systemic mycoses, only a limited arsenal of antifungals is available. The most commonly used classes of antifungal compounds used include azoles, polyenes, and echinocandins. Due to emerging resistance to standard therapy, significant side effects, and high costs for several antifungals, there is a medical need for new antifungals in the clinic and general practice. In order to expand the arsenal of compounds with antifungal activities, we screened a compound library including more than 35,000 individual compounds derived from organic synthesis as well as combinatorial compound collections representing mixtures of compounds for antimycotic activity. In total, more than 100,000 compounds were screened using a new type of activity-selectivity assay, analyzing both the antifungal activity and the compatibility with human cells at the same time. One promising hit, an (S)-2-aminoalkyl benzimidazole derivative, was developed among a series of lead compounds showing potent antifungal activity. (S)-2-(1-Aminoisobutyl)-1-(3-chlorobenzyl) benzimidazole showed the highest antifungal activity and the best compatibility with human cells in several cell culture models and against a number of clinical isolates of several species of pathogenic Candida yeasts. Transcriptional profiling indicates that the newly discovered compound is a potential inhibitor of the ergosterol pathway, in contrast to other benzimidazole derivatives, which target microtubules.
PMCID: PMC3186968  PMID: 21746957
4.  Integrated Detection of Extended-Spectrum-Beta-Lactam Resistance by DNA Microarray-Based Genotyping of TEM, SHV, and CTX-M Genes▿ †  
Journal of Clinical Microbiology  2009;48(2):460-471.
Extended-spectrum beta-lactamases (ESBL) of the TEM, SHV, or CTX-M type confer resistance to beta-lactam antibiotics in Gram-negative bacteria. The activity of these enzymes against beta-lactam antibiotics and their resistance against inhibitors can be influenced by genetic variation at the single-nucleotide level. Here, we describe the development and validation of an oligonucleotide microarray for the rapid identification of ESBLs in Gram-negative bacteria by simultaneously genotyping blaTEM, blaSHV, and blaCTX-M. The array consists of 618 probes that cover mutations responsible for 156 amino acid substitutions. As this comprises unprecedented genotyping coverage, the ESBL array has a high potential for epidemiological studies and infection control. With an assay time of 5 h, the ESBL microarray also could be an attractive option for the development of rapid antimicrobial resistance tests in the future. The validity of the DNA microarray was demonstrated with 60 blinded clinical isolates, which were collected during clinical routines. Fifty-eight of them were characterized phenotypically as ESBL producers. The chip was characterized with regard to its resolution, phenotype-genotype correlation, and ability to resolve mixed genotypes. ESBL phenotypes could be correctly ascribed to ESBL variants of blaCTX-M (76%), blaSHV (22%), or both (2%), whereas no ESBL variant of blaTEM was found. The most prevalent ESBLs identified were CTX-M-15 (57%) and SHV-12 (18%).
PMCID: PMC2815585  PMID: 20007393
5.  Ureaplasma urealyticum Meningitis in an Adult Patient▿  
Journal of Clinical Microbiology  2008;46(3):1141-1143.
A 38-year-old patient developed meningitis after a complicated kidney transplantation and organ rejection. Ureaplasma urealyticum was identified as the etiological agent by molecular and microbiological analyses of the cerebrospinal fluid. The patient was successfully treated with doxycycline and chloramphenicol. This is the first report of Ureaplasma urealyticum meningitis in an adult.
PMCID: PMC2268352  PMID: 18174297
6.  Role of Calcineurin in Stress Resistance, Morphogenesis, and Virulence of a Candida albicans Wild-Type Strain  
Infection and Immunity  2006;74(7):4366-4369.
By generating a calcineurin mutant of the Candida albicans wild-type strain SC5314 with the help of a new recyclable dominant selection marker, we confirmed that calcineurin mediates tolerance to a variety of stress conditions but is not required for the ability of C. albicans to switch to filamentous growth in response to hypha-inducing environmental signals. While calcineurin was essential for virulence of C. albicans in a mouse model of disseminated candidiasis, deletion of CMP1 did not significantly affect virulence during vaginal or pulmonary infection, demonstrating that the requirement for calcineurin for a successful infection depends on the host niche.
PMCID: PMC1489686  PMID: 16790813
7.  Induction of SAP7 Correlates with Virulence in an Intravenous Infection Model of Candidiasis but Not in a Vaginal Infection Model in Mice  
Infection and Immunity  2005;73(10):7061-7063.
SAP7 of Candida albicans is induced after vaginal infection of mice. Conversely, virulence during vaginal infection was not affected in a Δsap7/Δsap7 mutant strain. Only a partial virulence phenotype was detectable after intravenous injection. In conclusion, SAP7 expression does not correlate with C. albicans virulence in mice.
PMCID: PMC1230973  PMID: 16177393
8.  Profile of Candida albicans-Secreted Aspartic Proteinase Elicited during Vaginal Infection  
Infection and Immunity  2005;73(3):1828-1835.
Vaginal infections caused by the opportunistic yeast Candida albicans are a significant problem in women of child-bearing age. Several factors are recognized as playing a crucial role in the pathogenesis of superficial candidiasis; these factors include hyphal formation, phenotypic switching, and the expression of virulence factors, including a 10-member family of secreted aspartic proteinases. In the present investigation, we analyzed the secreted aspartic proteinase gene (SAP) expression profile of C. albicans that is elicited in the course of vaginal infection in mice and how this in vivo expression profile is associated with hyphal formation. We utilized two different genetic reporter systems that allowed us to observe SAP expression on a single-cell basis, a recombination-based in vivo expression technology and green fluorescent protein-expressing Candida reporter strains. Of the six SAP genes that were analyzed (SAP1 to SAP6), only SAP4 and SAP5 were detectably induced during infection in this model. Expression of both of these genes was associated with hyphal growth, although not all hyphal cells detectably expressed SAP4 and SAP5. SAP5 expression was induced soon after infection, whereas SAP4 was expressed at later times and in fewer cells compared with SAP5. These findings point to a link between morphogenetic development and expression of virulence genes during Candida vaginitis in mice, where host signals induce both hyphal formation and expression of SAP4 and SAP5, but temporal gene expression patterns are ultimately controlled by other factors.
PMCID: PMC1064921  PMID: 15731084
9.  Tec1p-Independent Activation of a Hypha-Associated Candida albicans Virulence Gene during Infection  
Infection and Immunity  2004;72(4):2386-2389.
The Tec1p transcription factor is involved in the expression of hypha-specific genes in Candida albicans. Although the induction of the hypha-associated SAP5 gene by serum in vitro depends on Tec1p, deletion of all Tec1p binding site consensus sequences from the SAP5 promoter did not affect its activation. In two different animal models of candidiasis, the SAP5 promoter was induced even in a Δtec1 deletion mutant, demonstrating that the requirement for Tec1p in gene expression in C. albicans depends on the environmental conditions within the host.
PMCID: PMC375214  PMID: 15039365
10.  High Diversity of ankA Sequences of Anaplasma phagocytophilum among Ixodes ricinus Ticks in Germany 
Journal of Clinical Microbiology  2003;41(11):5033-5040.
In Germany humans with acute granulocytic ehrlichiosis have not yet been described. Here, we characterized three different genes of Anaplasma phagocytophilum strains infecting German Ixodes ricinus ticks in order to test whether they differ from strains in other European countries and the United States. A total of 1,022 I. ricinus ticks were investigated for infection with A. phagocytophilum by nested PCR and sequence analysis. Forty-two (4.1%) ticks were infected. For all positive ticks, parts of the 16S rRNA and groESL genes were sequenced. The complete coding sequence of the ankA gene could be determined in 24 samples. The 16S rRNA and groESL gene sequences were as much as 100% identical to known sequences. Fifteen ankA sequences were ≥99.37% identical to sequences derived from humans with granulocytic ehrlichiosis in Europe and from a horse with granulocytic ehrlichiosis in Germany. Thus, German I. ricinus ticks most likely harbor A. phagocytophilum strains that can cause disease in humans. Nine additional sequences were clearly different from known ankA sequences. Because these newly described sequences have never been obtained from diseased humans or animals, their biological significance is currently unknown. Based on this unexpected sequence heterogeneity, we propose to use the ankA gene for further phylogenetic analyses of A. phagocytophilum and to investigate the biology and pathogenicity of strains that differ in the ankA gene.
PMCID: PMC262509  PMID: 14605135
11.  Calcineurin Is Essential for Virulence in Candida albicans  
Infection and Immunity  2003;71(9):5344-5354.
Calcineurin is a conserved Ca2+-calmodulin-activated, serine/threonine-specific protein phosphatase that regulates a variety of physiological processes, e.g., cell cycle progression, polarized growth, and adaptation to salt and alkaline pH stresses. In the pathogenic yeast Cryptococcus neoformans, calcineurin is also essential for growth at 37°C and virulence. To investigate whether calcineurin plays a role in the virulence of Candida albicans, the major fungal pathogen of humans, we constructed C. albicans mutants in which both alleles of the CMP1 gene, encoding the calcineurin catalytic subunit, were deleted. The C. albicans Δcmp1 mutants displayed hypersensitivity to elevated Na+, Li+, and Mn2+ concentrations and to alkaline pH, phenotypes that have been described after calcineurin inactivation in the related yeast Saccharomyces cerevisiae. Unlike S. cerevisiae calcineurin mutants, which exhibit reduced susceptibility to high Ca2+ concentrations, growth of C. albicans was inhibited in the presence of 300 mM CaCl2 after the deletion of CMP1, demonstrating that there are also differences in calcineurin-mediated cellular responses between these two yeast species. In contrast to C. neoformans, inactivation of calcineurin did not cause temperature sensitivity in C. albicans. In addition, hyphal growth, an important virulence attribute of C. albicans, was not impaired in the Δcmp1 mutants under a variety of inducing conditions. Nevertheless, the virulence of the mutants was strongly attenuated in a mouse model of systemic candidiasis, demonstrating that calcineurin signaling is essential for virulence in C. albicans.
PMCID: PMC187310  PMID: 12933882
12.  Repression of Hyphal Proteinase Expression by the Mitogen-Activated Protein (MAP) Kinase Phosphatase Cpp1p of Candida albicans Is Independent of the MAP Kinase Cek1p 
Infection and Immunity  2000;68(12):7159-7161.
Cpp1p is a putative mitogen-activated protein (MAP) kinase phosphatase that suppresses Candida albicans hyphal formation at 25°C through its probable substrate, the Cek1p filamentation MAP kinase. Here we report that expression of the serum-induced genes SAP4-6 and HYR1 increased several fold in hyphal forms of a cpp1/cpp1 null mutant, while the rate and extent of hyphal development up to 5 h were normal. Therefore, we provide evidence that Cpp1p represses hyphal gene expression by acting through a Cek1p-independent mechanism. SAP4-6 and HYR1 transcripts were undetectable in a null mutant of another key regulator of filamentation, Efg1p; thus, Efg1p and Cpp1p oppose each other during the expression of these genes in hyphal forms.
PMCID: PMC97832  PMID: 11083847
13.  Morphogenesis, Adhesive Properties, and Antifungal Resistance Depend on the Pmt6 Protein Mannosyltransferase in the Fungal Pathogen Candida albicans 
Journal of Bacteriology  2000;182(11):3063-3071.
Protein mannosyltransferases (Pmt proteins) initiate O glycosylation of secreted proteins in fungi. We have characterized PMT6, which encodes the second Pmt protein of the fungal pathogen Candida albicans. The residues of Pmt6p are 21 and 42% identical to those of C. albicans Pmt1p and S. cerevisiae Pmt6p, respectively. Mutants lacking one or two PMT6 alleles grow normally and contain normal Pmt enzymatic activities in cell extracts but show phenotypes including a partial block of hyphal formation (dimorphism) and a supersensitivity to hygromycin B. The morphogenetic defect can be suppressed by overproduction of known components of signaling pathways, including Cek1p, Cph1p, Tpk2p, and Efg1p, suggesting a specific Pmt6p target protein upstream of these components. Mutants lacking both PMT1 and PMT6 are viable and show pmt1 mutant phenotypes and an additional sensitivity to the iron chelator ethylenediamine-di(o-hydroxyphenylacetic acid). The lack of Pmt6p significantly reduces adherence to endothelial cells and overall virulence in a mouse model of systemic infection. The results suggest that Pmt6p regulates a more narrow subclass of proteins in C. albicans than Pmt1p, including secreted proteins responsible for morphogenesis and antifungal sensitivities.
PMCID: PMC94490  PMID: 10809683
14.  Roles of the Candida albicans Mitogen-Activated Protein Kinase Homolog, Cek1p, in Hyphal Development and Systemic Candidiasis† 
Infection and Immunity  1998;66(6):2713-2721.
Extracellular signal-regulated protein kinase (ERK, or mitogen-activated protein kinase [MAPK]) regulatory cascades in fungi turn on transcription factors that control developmental processes, stress responses, and cell wall integrity. CEK1 encodes a Candida albicans MAPK homolog (Cek1p), isolated by its ability to interfere with the Saccharomyces cerevisiae MAPK mating pathway. C. albicans cells with a deletion of the CEK1 gene are defective in shifting from a unicellular budding colonial growth mode to an agar-invasive hyphal growth mode when nutrients become limiting on solid medium with mannitol as a carbon source or on glucose when nitrogen is severely limited. The same phenotype is seen in C. albicans mutants in which the homologs (CST20, HST7, and CPH1) of the S. cerevisiae STE20, STE7, and STE12 genes are disrupted. In S. cerevisiae, the products of these genes function as part of a MAPK cascade required for mating and invasiveness of haploid cells and for pseudohyphal development of diploid cells. Epistasis studies revealed that the C. albicans CST20, HST7, CEK1, and CPH1 gene products lie in an equivalent, canonical, MAPK cascade. While Cek1p acts as part of the MAPK cascade involved in starvation-specific hyphal development, it may also play independent roles in C. albicans. In contrast to disruptions of the HST7 and CPH1 genes, disruption of the CEK1 gene adversely affects the growth of serum-induced mycelial colonies and attenuates virulence in a mouse model for systemic candidiasis.
PMCID: PMC108260  PMID: 9596738
15.  Signaling through Adenylyl Cyclase Is Essential for Hyphal Growth and Virulence in the Pathogenic Fungus Candida albicans 
Molecular Biology of the Cell  2001;12(11):3631-3643.
The human fungal pathogen Candida albicans switches from a budding yeast form to a polarized hyphal form in response to various external signals. This morphogenetic switching has been implicated in the development of pathogenicity. We have cloned the CaCDC35 gene encoding C. albicans adenylyl cyclase by functional complementation of the conditional growth defect of Saccharomyces cerevisiae cells with mutations in Ras1p and Ras2p. It has previously been shown that these Ras homologues regulate adenylyl cyclase in yeast. The C. albicans adenylyl cyclase is highly homologous to other fungal adenylyl cyclases but has less sequence similarity with the mammalian enzymes. C. albicans cells deleted for both alleles of CaCDC35 had no detectable cAMP levels, suggesting that this gene encodes the only adenylyl cyclase in C. albicans. The homozygous mutant cells were viable but grew more slowly than wild-type cells and were unable to switch from the yeast to the hyphal form under all environmental conditions that we analyzed in vitro. Moreover, this morphogenetic switch was completely blocked in mutant cells undergoing phagocytosis by macrophages. However, morphogenetic switching was restored by exogenous cAMP. On the basis of epistasis experiments, we propose that CaCdc35p acts downstream of the Ras homologue CaRas1p. These epistasis experiments also suggest that the putative transcription factor Efg1p and components of the hyphal-inducing MAP kinase pathway depend on the function of CaCdc35p in their ability to induce morphogenetic switching. Homozygous cacdc35Δ cells were unable to establish vaginal infection in a mucosal membrane mouse model and were avirulent in a mouse model for systemic infections. These findings suggest that fungal adenylyl cyclases and other regulators of the cAMP signaling pathway may be useful targets for antifungal drugs.
PMCID: PMC60281  PMID: 11694594
16.  Derepressed Hyphal Growth and Reduced Virulence in a VH1 Family-related Protein Phosphatase Mutant of the Human Pathogen Candida albicans 
Molecular Biology of the Cell  1997;8(12):2539-2551.
Mitogen-activated protein (MAP) kinases are pivotal components of eukaryotic signaling cascades. Phosphorylation of tyrosine and threonine residues activates MAP kinases, but either dual-specificity or monospecificity phosphatases can inactivate them. The Candida albicans CPP1 gene, a structural member of the VH1 family of dual- specificity phosphatases, was previously cloned by its ability to block the pheromone response MAP kinase cascade in Saccharomyces cerevisiae. Cpp1p inactivated mammalian MAP kinases in vitro and acted as a tyrosine-specific enzyme. In C. albicans a MAP kinase cascade can trigger the transition from the budding yeast form to a more invasive filamentous form. Disruption of the CPP1 gene in C. albicans derepressed the yeast to hyphal transition at ambient temperatures, on solid surfaces. A hyphal growth rate defect under physiological conditions in vitro was also observed and could explain a reduction in virulence associated with reduced fungal burden in the kidneys seen in a systemic mouse model. A hyper-hyphal pathway may thus have some detrimental effects on C. albicans cells. Disruption of the MAP kinase homologue CEK1 suppressed the morphological effects of the CPP1 disruption in C. albicans. The results presented here demonstrate the biological importance of a tyrosine phosphatase in cell-fate decisions and virulence in C. albicans.
PMCID: PMC25726  PMID: 9398674

Results 1-16 (16)