Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Quantification of urinary TIMP-2 and IGFBP-7: an adequate diagnostic test to predict acute kidney injury after cardiac surgery? 
Critical Care  2015;19(1):3.
Postoperative acute kidney injury (AKI) is a frequently observed complication after on-pump cardiac surgery (CS) and is associated with adverse patient outcomes. Early identification of patients at risk is essential for the prevention of AKI after CS. In this study, we analysed whether urinary tissue inhibitor of metalloproteinase 2 (TIMP-2) combined with urine insulin-like growth factor binding protein 7 (IGFBP-7) ([TIMP-2] × [IGFBP-7]) is an adequate diagnostic test to identify early AKI after on-pump CS.
In 42 patients undergoing coronary artery bypass graft surgery, we surveyed individual risk factors for AKI and defined AKI by applying the Kidney Disease: Improving Global Outcomes (KDIGO) classification during the day of surgery and the following 2 days after surgery. Concentrations of urinary TIMP-2 multiplied by IGFBP-7 were recorded at four time points: at baseline pre-surgery, at the end of surgery, 4 hours after cardiopulmonary bypass (CPB) and at 8:00 am on the first postoperative day.
In total, 38% of the patients experienced AKI. The results showed a median baseline [TIMP-2] × [IGFBP-7] concentration of 0.3 (ng/ml)2/1,000, decreasing at the end of surgery and then increasing at the next measurement point 4 hours after CPB and further on the first postoperative day. On the first postoperative day, patients with AKI had significantly higher concentrations of [TIMP-2] × [IGFBP-7]. On the day of surgery, the concentration did not significantly differ between patients classified as KDIGO 0 or KDIGO 1 or 2. Previously published cutoff points of 0.3 and 2 were not confirmed in our study cohort.
[TIMP-2] × [IGFBP-7] concentration can be used as a diagnostic test to identify patients at increased risk of AKI after CS on the first postoperative day. At earlier time points, no significant difference in [TIMP-2] × [IGFBP-7] concentration was found between patients classified as KDIGO 0 or KDIGO 1 or 2.
Trial registration
German Clinical Trials Register (DRKS) DRKS00005457. Registered 26 November 2013.
PMCID: PMC4310039  PMID: 25560277
2.  A Novel, Innovative Ovine Model of Chronic Ischemic Cardiomyopathy Induced by Multiple Coronary Ligations 
Artificial organs  2010;34(11):918-922.
Heart failure is one of the fastest-growing epidemics worldwide in health care today. Although a wide variety of animal models exist to create chronic heart failure, there are few truly successful, reproducible models with ischemic dilation and mitral regurgitation. Six healthy sheep (36 ± 5 kg) underwent multiple, strategic coronary artery ligations on the left ventricle (LV). Six to eight ligations were performed transmurally on three of four segments of the LV: anterior, lateral, and posterior. Side branches of the left anterior descending and circumflex arteries were ligated to create multiple, patchy areas of myocardial infarction. Cardiac global and regional systolic function was assessed by echocardiography and cardiac magnetic resonance imaging (MRI). The extent, the characteristics, and the location of the myocardial infarction were qualitatively and quantitatively assessed by late gadolinium enhancement imaging. The overall mortality rate was 16.7% (1/6 animals). Animals who survived showed a significantly reduced ejection fraction (mean 60 ± 5% to 28 ± 7%; P < 0.05); additionally, two out of the remaining five (40%) animals developed mild to moderate mitral regurgitation quantified by cardiac MRI. Furthermore, each animal developed clinical signs of heart failure (tachycardia, dyspnea, and tachypnea) consistent with global, dilated cardiomyopathy noted on MRI. Creating and reproducing a model of global, ischemic cardiomyopathy with functional mitral regurgitation is an arduous task. We have developed a promising model of ischemic heart failure using multiple ligations, which mimics the sequelae of human cardiomyopathy. Our proposed model is highly effective, reproducible, and may be used for experimental research on heart failure (cardiac assist devices, heart transplant, etc.).
PMCID: PMC3954519  PMID: 21137156
Coronary ligation; Chronic heart failure; Animal model; Sheep
3.  The effect of changing the sequence of cuff inflation and device fixation with the LMA-Supreme® on device position, ventilatory complications, and airway morbidity: a clinical and fiberscopic study 
BMC Anesthesiology  2014;14:2.
The conventional sequence when using supraglottic airway devices is insertion, cuff inflation and fixation. Our hypothesis was that a tighter fit of the cuff and tip could be achieved with a consequently lower incidence of air leak, better separation of gastrointestinal and respiratory tracts and less airway morbidity if the device were first affixed and the cuff then inflated.
Our clinical review board approved the study (public registry number DRKS00003174). An LMA Supreme® was inserted into 184 patients undergoing lower limb arthroscopy in propofol-remifentanil anaesthesia who were randomly assigned to either the control (inflation then fixation; n = 92) or study group (fixation then inflation; n = 92). The cuff was inflated to 60 cmH2O. The patients’ lungs were ventilated in pressure-controlled mode with 5 cmH2O PEEP, Pmax to give 6 ml kg-1 tidal volume, and respiratory rate adjusted to end-tidal CO2 of 4.8 and 5.6 kPa. Correct cuff and tip position were determined by leak detection, capnometry trace, oropharyngeal leak pressure, suprasternal notch test, and lube-tube test. Bowl and cuff position and the presence of glottic narrowing were assessed by fiberscopic examination. Postoperative dysphagia, hoarseness and sore throat were assessed with a questionnaire. Ventilatory impairment was defined as a tidal volume < 6 ml kg-1 with Pmax at oropharyngeal leak pressure, glottic narrowing was defined as an angle between the vocal cords under 16 degrees.
The incidence of incorrect device position (18% vs. 21%), failed ventilation (10% vs. 9%), leak pressure (24.8 vs. 25.2 cmH2O, p = 0.63), failed lube-tube test (16.3% vs. 17.6%) and glottic narrowing (19.3% vs. 14.1%, p = 0.35) was similar in both groups (control vs. study, resp.). When glottic narrowing occurred, it was more frequently associated with ventilatory impairment in the control group (77% vs. 39%; p = 0.04). Airway morbidity was more common in the control group (33% vs. 19%; p < 0.05).
Altering the sequence of cuff inflation and device fixation does not affect device position, oropharyngeal leak pressures or separation of gastrointestinal and respiratory tracts. It reduces the incidence of glottic narrowing with impaired ventilation and also perioperative airway morbidity.
PMCID: PMC3890616  PMID: 24387685
Supraglottic airway; Insertion sequence; Malposition; Endoscopic evaluation; Glottic narrowing; Ventilatory impairment; Airway morbidity
4.  The eNOS 894G/T gene polymorphism and its influence on early and long-term mortality after on-pump cardiac surgery 
The eNOS 894G/T polymorphism (GG, GT, and TT) is associated with cardiovascular mortality and may influence cardiovascular diseases as a genetic risk factor. Moreover, this polymorphism has an impact on intraoperative hemodynamics during cardiac surgery with cardiopulmonary bypass (CPB). In this study, we analyzed the influence of this gene polymorphism on early clinical outcome in patients who underwent cardiac surgery with CPB. Also, we performed a 5-year follow-up, assessing the impact of this polymorphism on long-term mortality.
500 patients who underwent cardiac surgery with CPB between 2006 and 2007 were included in this prospective single centre study. Genotyping for the eNOS gene polymorphism was performed by polymerase chain reaction amplification.
Genotype distribution of 894G/T was: GG 50.2%; GT 42.2%; TT 7.8%. Cardiovascular risk factors were equally distributed between the different genotypes of the eNOS 894G/T polymorphism. No significant difference among the groups was shown regarding Euroscore, SAPS II and APACHE II. Perioperative characteristics were also not affected by the genotypes, except for the consumption of norepinephrine (p = 0.03) and amiodarone (p = 0.01) which was higher in the GT allele carrier. The early postoperative course was quite uniform across the genotypes, except for mean intensive care unit length of stay which was significantly prolonged in GT carriers (p = 0.001). The five-year follow-up was 100% complete and showed no significant differences regarding mortality between the groups.
Our results show that the eNOS 894G /T polymorphism is not associated with early and late clinical outcome after cardiac surgery. Thus, this polymorphism can actually not help to identify high risk groups in the heterogeneous population of individuals who undergo cardiac surgery with CPB.
PMCID: PMC3819002  PMID: 24161078
5.  Mild metabolic acidosis impairs the β-adrenergic response in isolated human failing myocardium 
Critical Care  2012;16(4):R153.
Pronounced extracellular acidosis reduces both cardiac contractility and the β-adrenergic response. In the past, this was shown in some studies using animal models. However, few data exist regarding how the human end-stage failing myocardium, in which compensatory mechanisms are exhausted, reacts to acute mild metabolic acidosis. The aim of this study was to investigate the effect of mild metabolic acidosis on contractility and the β-adrenergic response of isolated trabeculae from human end-stage failing hearts.
Intact isometrically twitching trabeculae isolated from patients with end-stage heart failure were exposed to mild metabolic acidosis (pH 7.20). Trabeculae were stimulated at increasing frequencies and finally exposed to increasing concentrations of isoproterenol (0 to 1 × 10-6 M).
A mild metabolic acidosis caused a depression in twitch-force amplitude of 26% (12.1 ± 1.9 to 9.0 ± 1.5 mN/mm2; n = 12; P < 0.01) as compared with pH 7.40. Force-frequency relation measurements yielded no further significant differences of twitch force. At the maximal isoproterenol concentration, the force amplitude was comparable in each of the two groups (pH 7.40 versus pH 7.20). However, the half-maximal effective concentration (EC50) was significantly increased in the acidosis group, with an EC50 of 5.834 × 10-8 M (confidence interval (CI), 3.48 × 10-8 to 9.779 × 10-8; n = 9), compared with the control group, which had an EC50 of 1.056 × 10-8 M (CI, 2.626 × 10-9 to 4.243 × 10-8; n = 10; P < 0.05), indicating an impaired β-adrenergic force response.
Our data show that mild metabolic acidosis reduces cardiac contractility and significantly impairs the β-adrenergic force response in human failing myocardium. Thus, our results could contribute to the still-controversial discussion about the therapy regimen of acidosis in patients with critical heart failure.
PMCID: PMC3580742  PMID: 22889236
6.  Hemodynamic effects of peri-operative statin therapy in on-pump cardiac surgery patients 
Peri-operative statin therapy in cardiac surgery cases is reported to reduce the rate of mortality, stroke, postoperative atrial fibrillation, and systemic inflammation. Systemic inflammation could affect the hemodynamic parameters and stability. We set out to study the effect of statin therapy on perioperative hemodynamic parameters and its clinical outcome.
In a single center study from 2006 to 2007, peri-operative hemodynamic parameters of 478 patients, who underwent cardiac surgery with cardiopulmonary bypass, were measured. Patients were divided into those who received perioperative statin therapy (n = 276; statin group) and those who did not receive statin therapy (n = 202; no-statin group). The two groups were compared together using Kolmogorov-Smirnov-Test, Fisher’s-Exact-Test, and Student’s-T-test. A p value < 0.05 was considered as significant.
There was no significant difference in the preoperative risk factors. Onset of postoperative atrial fibrillation was not affected by statin therapy. Extended hemodynamic measurements revealed no significant difference between the two groups, apart from Systemic Vascular Resistance Index (SVRI) . The no-statin group had a significantly higher SVRI (882 ± 206 vs. 1050 ± 501 dyn s/cm5/m2, p = 0.022). Inotropic support was the same in both groups and no significant difference in the mortality rate was noticed. Also, hemodynamic parameters were not affected by different types and doses of statins.
Perioperative statin therapy for patients undergoing on-pump coronary bypass grafting or valvular surgery, does not affect the hemodynamic parameters and its clinical outcome.
PMCID: PMC3398842  PMID: 22533985
Cardiac surgery; Statin therapy; Hemodynamic; Outcome
7.  AMPK - Activated Protein Kinase and its Role in Energy Metabolism of the Heart 
Current Cardiology Reviews  2010;6(4):337-342.
Adenosine monophosphate – activated kinase (AMPK) plays a key role in the coordination of the heart’s anabolic and catabolic pathways. It induces a cellular cascade at the center of maintaining energy homeostasis in the cardiomyocytes.. The activated AMPK is a heterotrimeric protein, separated into a catalytic α - subunit (63kDa), a regulating β - subunit (38kDa) and a γ - subunit (38kDa), which is allosterically adjusted by adenosine triphosphate (ATP) and adenosine monophosphate (AMP). The actual binding of AMP to the γ – subunit is the step which activates AMPK.
AMPK serves also as a protein kinase in several metabolic pathways of the heart, including cellular energy sensoring or cardiovascular protection. The AMPK cascade represents a sensitive system, activated by cellular stresses that deplete ATP and acts as an indicator of intracellular ATP/AMP. In the context of cellular stressors (i.e. hypoxia, pressure overload, hypertrophy or ATP deficiency) the increasing levels of AMP promote allosteric activation and phosphorylation of AMPK. As the concentration of AMP begins to increase, ATP competitively inhibits further phosphorylation of AMPK. The increase of AMP may also be induced either from an iatrogenic emboli, percutaneous coronary intervention, or from atherosclerotic plaque rupture leading to an ischemia in the microcirculation. To modulate energy metabolism by phosphorylation and dephosphorylation is vital in terms of ATP usage, maintaining transmembrane transporters and preserving membrane potential.
In this article, we review AMPK and its role as an important regulatory enzyme during periods of myocardial stress, regulating energy metabolism, protein synthesis and cardiovascular protection.
PMCID: PMC3083815  PMID: 22043210
Adenosine monophosphate - activated protein kinase; AMPK; heart failure; cardiac energy metabolism.
8.  Carney-Complex: Multiple resections of recurrent cardiac myxoma 
We report a case of a female patient who was operated at the third relapse of an atrial myxoma caused by Carney complex. The difficult operation was performed without any complications despite extensive adhesions caused by the previous operations. The further inpatient course went without complications and the patient was discharged to the consecutive treatment on the 9th postoperative day. The echocardiographic finding postoperative showed no abnormalities.
PMCID: PMC3038896  PMID: 21291531
9.  Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIδC can be reversed by inhibition of late Na+ current 
Basic Research in Cardiology  2010;106(2):263-272.
Transgenic (TG) Ca2+/calmodulin-dependent protein kinase II (CaMKII) δC mice develop systolic heart failure (HF). CaMKII regulates intracellular Ca2+ handling proteins as well as sarcolemmal Na+ channels. We hypothesized that CaMKII also contributes to diastolic dysfunction and arrhythmias via augmentation of the late Na+ current (late INa) in early HF (8-week-old TG mice). Echocardiography revealed severe diastolic dysfunction in addition to decreased systolic ejection fraction. Premature arrhythmogenic contractions (PACs) in isolated isometrically twitching papillary muscles only occurred in TG preparations (5 vs. 0, P < 0.05) which could be completely terminated when treated with the late INa inhibitor ranolazine (Ran, 5 μmol/L). Force–frequency relationships revealed significantly reduced twitch force amplitudes in TG papillary muscles. Most importantly, diastolic tension increased with raising frequencies to a greater extent in TG papillary muscles compared to WT specimen (at 10 Hz: 3.7 ± 0.4 vs. 2.5 ± 0.3 mN/mm2; P < 0.05). Addition of Ran improved diastolic dysfunction to 2.1 ± 0.2 mN/mm2 (at 10 Hz; P < 0.05) without negative inotropic effects. Mechanistically, the late INa was markedly elevated in myocytes isolated from TG mice and could be completely reversed by Ran. In conclusion, our results show for the first time that TG CaMKIIδC overexpression induces diastolic dysfunction and arrhythmogenic triggers possibly via an enhanced late INa. Inhibition of elevated late INa had beneficial effects on arrhythmias as well as diastolic function in papillary muscles from CaMKIIδC TG mice. Thus, late INa inhibition appears to be a promising option for diastolic dysfunction and arrhythmias in HF where CaMKII is found to be increased.
PMCID: PMC3032905  PMID: 21174213
Heart failure; Arrhythmias; Contractility; Diastolic dysfunction; Excitation–contraction coupling; CaMKII
10.  Bentall procedure 39 years after implantation of a Starr-Edwards Aortic Caged- Ball-Valve Prosthesis 
We report a case of a male patient who received an implantation of a Starr-Edwards-caged-ball-valve-prosthesis in 1967. The surgery and postoperative course were without complications and the patient recovered well after the operation. For the next four decades, the patient remained asymptomatic - no restrictions on his lifestyle and without any complications. In 2006, 39 years after the initial operation, we performed a Bentall-Procedure to treat an aortic ascendens aneurysm with diameters of 6.0 × 6.5 cm: we explanted the old Starr-Edwards-aortic-caged-ball-valve-prosthesis and replaced the ascending aorta with a 29 mm St.Jude Medical aortic-valve-composite-graft and re-implanted the coronary arteries.
This case represents the longest time period between Starr-Edwards-caged-ball-valve-prothesis-implantation and Bentall-reoperation, thereby confirming the excellent durability of this valve.
PMCID: PMC2848035  PMID: 20298579

Results 1-10 (10)