PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Autodissemination of the entomopathogenic fungus Metarhizium anisopliae amongst adults of the malaria vector Anopheles gambiae s.s. 
Malaria Journal  2004;3:45.
Background
The entomopathogenic fungus Metarhizium anisopliae is being considered as a biocontrol agent for adult African malaria vectors. In the laboratory, work was carried out to assess whether horizontal transmission of the pathogen can take place during copulation, as this would enhance the impact of the fungus on target populations when compared with insecticides.
Methods
Virgin female Anopheles gambiae sensu stricto were exposed to conidia whilst resting on fungus-impregnated paper. These females were then placed together for one hour with uncontaminated males in proportions of either 1:1 or 1:10 shortly before the onset of mating activity.
Results
Males that had acquired fungal infection after mating indicate that passive transfer of the pathogen from infected females does occur, with mean male infection rates between 10.7 ± 3.2% and 33.3 ± 3.8%. The infections caused by horizontal transmission did not result in overall differences in survival between males from test and control groups, but in one of the three experiments the infected males had significantly shorter life spans than uninfected males (P < 0.05).
Conclusion
This study shows that autodissemination of fungal inoculum between An. gambiae s.s. mosquitoes during mating activity is possible under laboratory conditions. Field studies are required next, to assess the extent to which this phenomenon may augment the primary contamination pathway (i.e. direct contact with fungus-impregnated targets) of vector populations in the field.
doi:10.1186/1475-2875-3-45
PMCID: PMC535890  PMID: 15566626
2.  Entomopathogenic fungi for mosquito control: A review 
Fungal diseases in insects are common and widespread and can decimate their populations in spectacular epizootics. Virtually all insect orders are susceptible to fungal diseases, including Dipterans. Fungal pathogens such as Lagenidium, Coelomomyces and Culicinomyces are known to affect mosquito populations, and have been studied extensively. There are, however, many other fungi that infect and kill mosquitoes at the larval and/or adult stage. The discovery, in 1977, of the selective mosquito-pathogenic bacterium Bacillus thuringiensis Berliner israelensis (Bti) curtailed widespread interest in the search for other suitable biological control agents. In recent years interest in mosquito-killing fungi is reviving, mainly due to continuous and increasing levels of insecticide resistance and increasing global risk of mosquito-borne diseases. This review presents an update of published data on mosquito-pathogenic fungi and mosquito-pathogen interactions, covering 13 different fungal genera. Notwithstanding the potential of many fungi as mosquito control agents, only a handful have been commercialized and are marketed for use in abatement programs. We argue that entomopathogenic fungi, both new and existing ones with renewed/improved efficacies may contribute to an expansion of the limited arsenal of effective mosquito control tools, and that they may contribute in a significant and sustainable manner to the control of vector-borne diseases such as malaria, dengue and filariasis.
PMCID: PMC528879  PMID: 15861235
Culicidae; insect-pathogenic fungi; Lagenidium; Coelomomyces; Culicinomyces; Hyphomycetes; biocontrol
3.  Infection of malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae 
Malaria Journal  2003;2:29.
Background
Current intra-domiciliary vector control depends on the application of residual insecticides and/or repellents. Although biological control agents have been developed against aquatic mosquito stages, none are available for adults. Following successful use of an entomopathogenic fungus against tsetse flies (Diptera: Glossinidae) we investigated the potency of this fungus as a biological control agent for adult malaria and filariasis vector mosquitoes.
Methods
In the laboratory, both sexes of Anopheles gambiae sensu stricto and Culex quinquefasciatus were passively contaminated with dry conidia of Metarhizium anisopliae. Pathogenicity of this fungus for An. gambiae was further tested for varying exposure times and different doses of oil-formulated conidia.
Results
Comparison of Gompertz survival curves and LT50 values for treated and untreated specimens showed that, for both species, infected mosquitoes died significantly earlier (p < 0.0001) than uninfected control groups. No differences in LT50 values were found for different exposure times (24, 48 hrs or continuous exposure) of An. gambiae to dry conidia. Exposure to oil-formulated conidia (doses ranging from 1.6 × 107 to 1.6 × 1010 conidia/m2) gave LT50 values of 9.69 ± 1.24 (lowest dose) to 5.89 ± 0.35 days (highest dose), with infection percentages ranging from 4.4–83.7%.
Conclusion
Our study marks the first to use an entomopathogenic fungus against adult Afrotropical disease vectors. Given its high pathogenicity for both adult Anopheles and Culex mosquitoes we recommend development of novel targeted indoor application methods for the control of endophagic host-seeking females.
doi:10.1186/1475-2875-2-29
PMCID: PMC222926  PMID: 14565851
4.  Development of guidelines for the surveillance of invasive mosquitoes in Europe 
Parasites & Vectors  2013;6:209.
Background
The recent notifications of autochthonous cases of dengue and chikungunya in Europe prove that the region is vulnerable to these diseases in areas where known mosquito vectors (Aedes albopictus and Aedes aegypti) are present. Strengthening surveillance of these species as well as other invasive container-breeding aedine mosquito species such as Aedes atropalpus, Aedes japonicus, Aedes koreicus and Aedes triseriatus is therefore required. In order to support and harmonize surveillance activities in Europe, the European Centre for Disease Prevention and Control (ECDC) launched the production of ‘Guidelines for the surveillance of invasive mosquitoes in Europe’. This article describes these guidelines in the context of the key issues surrounding invasive mosquitoes surveillance in Europe.
Methods
Based on an open call for tender, ECDC granted a pan-European expert team to write the guidelines draft. It content is founded on published and grey literature, contractor’s expert knowledge, as well as appropriate field missions. Entomologists, public health experts and end users from 17 EU/EEA and neighbouring countries contributed to a reviewing and validation process. The final version of the guidelines was edited by ECDC (Additional file 1).
Results
The guidelines describe all procedures to be applied for the surveillance of invasive mosquito species. The first part addresses strategic issues and options to be taken by the stakeholders for the decision-making process, according to the aim and scope of surveillance, its organisation and management. As the strategy to be developed needs to be adapted to the local situation, three likely scenarios are proposed. The second part addresses all operational issues and suggests options for the activities to be implemented, i.e. key procedures for field surveillance of invasive mosquito species, methods of identification of these mosquitoes, key and optional procedures for field collection of population parameters, pathogen screening, and environmental parameters. In addition, methods for data management and analysis are recommended, as well as strategies for data dissemination and mapping. Finally, the third part provides information and support for cost estimates of the planned programmes and for the evaluation of the applied surveillance process.
Conclusion
The ‘Guidelines for the surveillance of invasive mosquitoes in Europe’ aim at supporting the implementation of tailored surveillance of invasive mosquito species of public health importance. They are intended to provide support to professionals involved in mosquito surveillance or control, decision/policy makers, stakeholders in public health and non-experts in mosquito surveillance. Surveillance also aims to support control of mosquito-borne diseases, including integrated vector control, and the guidelines are therefore part of a tool set for managing mosquito-borne disease risk in Europe.
doi:10.1186/1756-3305-6-209
PMCID: PMC3724590  PMID: 23866915
Invasive mosquitoes; Aedes; Surveillance; Monitoring; Vector; Dengue; Chikungunya; Europe; Guidelines
5.  Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-west Europe 
Parasites & Vectors  2012;5:74.
Background
Neoehrlichia mikurensis s an emerging and vector-borne zoonosis: The first human disease cases were reported in 2010. Limited information is available about the prevalence and distribution of Neoehrlichia mikurensis in Europe, its natural life cycle and reservoir hosts. An Ehrlichia-like schotti variant has been described in questing Ixodes ricinus ticks, which could be identical to Neoehrlichia mikurensis.
Methods
Three genetic markers, 16S rDNA, gltA and GroEL, of Ehrlichia schotti-positive tick lysates were amplified, sequenced and compared to sequences from Neoehrlichia mikurensis. Based on these DNA sequences, a multiplex real-time PCR was developed to specifically detect Neoehrlichia mikurensis in combination with Anaplasma phagocytophilum in tick lysates. Various tick species from different life-stages, particularly Ixodes ricinus nymphs, were collected from the vegetation or wildlife. Tick lysates and DNA derived from organs of wild rodents were tested by PCR-based methods for the presence of Neoehrlichia mikurensis. Prevalence of Neoehrlichia mikurensis was calculated together with confidence intervals using Fisher's exact test.
Results
The three genetic markers of Ehrlichia schotti-positive field isolates were similar or identical to Neoehrlichia mikurensis. Neoehrlichia mikurensis was found to be ubiquitously spread in the Netherlands and Belgium, but was not detected in the 401 tick samples from the UK. Neoehrlichia mikurensis was found in nymphs and adult Ixodes ricinus ticks, but neither in their larvae, nor in any other tick species tested. Neoehrlichia mikurensis was detected in diverse organs of some rodent species. Engorging ticks from red deer, European mouflon, wild boar and sheep were found positive for Neoehrlichia mikurensis.
Conclusions
Ehrlichia schotti is similar, if not identical, to Neoehrlichia mikurensis. Neoehrlichia mikurensis is present in questing Ixodes ricinus ticks throughout the Netherlands and Belgium. We propose that Ixodes ricinus can transstadially, but not transovarially, transmit this microorganism, and that different rodent species may act as reservoir hosts. These data further imply that wildlife and humans are frequently exposed to Neoehrlichia mikurensis-infected ticks through tick bites. Future studies should aim to investigate to what extent Neoehrlichia mikurensis poses a risk to public health.
doi:10.1186/1756-3305-5-74
PMCID: PMC3395572  PMID: 22515314
Vector-borne disease; Emerging zoonoses; Candidatus N. mikurensis; I. ricinus; Anaplasma phagocytophylum
6.  Parasites of vectors - Ixodiphagus hookeri and its Wolbachia symbionts in ticks in the Netherlands 
Parasites & Vectors  2011;4:228.
Background
Ixodiphagus hookeri is a parasitic wasp of ixodid ticks around the world. It has been studied as a potential bio-control agent for several tick species. We suspected that the presence of Wolbachia infected I. hookeri eggs in ticks is responsible for incidental detection of Wolbachia DNA in tick samples.
Methods
The 28S rRNA and 16S rRNA genes of a specimen of I. hookeri was amplified and sequenced. PCR on part of the 28S rRNA gene was used to detect parasitic wasp DNA in 349 questing Ixodes ricinus ticks from various sampling sites. Furthermore, the wsp gene of Wolbachia was sequenced from the I. hookeri specimen and a subset of ticks was tested using this marker.
Results
Several sequences from tick specimens were identical to the Wolbachia sequence of the I. hookeri specimen. Ixodiphagus hookeri was detected in 9.5% of all tested ticks, varying between 4% and 26% depending on geographic location. Ten out of eleven sampling sites throughout the Netherlands were positive for I. hookeri. Eighty-seven percent of I. hookeri-positive but only 1.6% of I. hookeri-negative ticks were Wolbachia positive. Detection of I. hookeri DNA was strongly associated with the detection of Wolbachia in ticks.
Conclusion
This is the first reported case of I. hookeri in the Netherlands. Furthermore I. hookeri harbours Wolbachia species and is broadly distributed in the Netherlands. While detection of Wolbachia DNA in ticks might often be due to parasitism with this wasp, other sources of Wolbachia DNA in ticks might exist as well.
doi:10.1186/1756-3305-4-228
PMCID: PMC3248373  PMID: 22152674
Ixodiphagus hookeri; Ixodes ricinus; Parasitic wasp; Tick; Wolbachia
7.  Aedes aegypti Mosquitoes Imported into the Netherlands, 2010 
Emerging Infectious Diseases  2011;17(12):2335-2337.
During summer 2010, Aedes aegypti mosquitoes were discovered in the Netherlands. Using genetic markers, we tracked the origin of these mosquitoes to a tire shipment from Miami, Florida, USA. Surveillance of tire exports from the United States should be included as part of a comprehensive surveillance system.
doi:10.3201/eid1712.110992
PMCID: PMC3311167  PMID: 22172498
vector-borne infections; Aedes aegypti; mosquitoes; dengue; yellow fever; virus; invasion; used tires; the Netherlands; imported; global health
8.  Towards an integrated approach in surveillance of vector-borne diseases in Europe 
Parasites & Vectors  2011;4:192.
Vector borne disease (VBD) emergence is a complex and dynamic process. Interactions between multiple disciplines and responsible health and environmental authorities are often needed for an effective early warning, surveillance and control of vectors and the diseases they transmit. To fully appreciate this complexity, integrated knowledge about the human and the vector population is desirable. In the current paper, important parameters and terms of both public health and medical entomology are defined in order to establish a common language that facilitates collaboration between the two disciplines. Special focus is put on the different VBD contexts with respect to the current presence or absence of the disease, the pathogen and the vector in a given location. Depending on the context, whether a VBD is endemic or not, surveillance activities are required to assess disease burden or threat, respectively. Following a decision for action, surveillance activities continue to assess trends.
doi:10.1186/1756-3305-4-192
PMCID: PMC3199249  PMID: 21967706
Vector borne disease; surveillance; public health; ECDC
9.  Entomopathogenic Fungus as a Biological Control for an Important Vector of Livestock Disease: The Culicoides Biting Midge 
PLoS ONE  2011;6(1):e16108.
Background
The recent outbreak of bluetongue virus in northern Europe has led to an urgent need to identify control measures for the Culicoides (Diptera: Ceratopogonidae) biting midges that transmit it. Following successful use of the entomopathogenic fungus Metarhizium anisopliae against larval stages of biting midge Culicoides nubeculosus Meigen, we investigated the efficacy of this strain and other fungi (Beauveria bassiana, Isaria fumosorosea and Lecanicillium longisporum) as biocontrol agents against adult C. nubeculosus in laboratory and greenhouse studies.
Methodology/Findings
Exposure of midges to ‘dry’ conidia of all fungal isolates caused significant reductions in survival compared to untreated controls. Metarhizium anisopliae strain V275 was the most virulent, causing a significantly decrease in midge survival compared to all other fungal strains tested. The LT50 value for strain V275 was 1.42 days compared to 2.21–3.22 days for the other isolates. The virulence of this strain was then further evaluated by exposing C. nubeculosus to varying doses (108–1011 conidia m−2) using different substrates (horse manure, damp peat, leaf litter) as a resting site. All exposed adults were found to be infected with the strain V275 four days after exposure. A further study exposed C. nubeculosus adults to ‘dry’ conidia and ‘wet’ conidia (conidia suspended in 0.03% aq. Tween 80) of strain V275 applied to damp peat and leaf litter in cages within a greenhouse. ‘Dry’ conidia were more effective than ‘wet’ conidia, causing 100% mortality after 5 days.
Conclusion/Significance
This is the first study to demonstrate that entomopathogenic fungi are potential biocontrol agents against adult Culicoides, through the application of ‘dry’ conidia on surfaces (e.g., manure, leaf litter, livestock) where the midges tend to rest. Subsequent conidial transmission between males and females may cause an increased level of fungi-induced mortality in midges thus reducing the incidence of disease.
doi:10.1371/journal.pone.0016108
PMCID: PMC3018483  PMID: 21264343

Results 1-9 (9)