Search tips
Search criteria

Results 1-25 (75)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  The Characteristics of Wild Rat (Rattus spp.) Populations from an Inner-City Neighborhood with a Focus on Factors Critical to the Understanding of Rat-Associated Zoonoses 
PLoS ONE  2014;9(3):e91654.
Norway and black rats (Rattus norvegicus and Rattus rattus) are among the most ubiquitous urban wildlife species and are the source of a number of zoonotic diseases responsible for significant human morbidity and mortality in cities around the world. Rodent ecology is a primary determinant of the dynamics of zoonotic pathogens in rodent populations and the risk of pathogen transmission to people, yet many studies of rat-associated zoonoses do not account for the ecological characteristics of urban rat populations. This hinders the development of an in-depth understanding of the ecology of rat-associated zoonoses, limits comparability among studies, and can lead to erroneous conclusions. We conducted a year-long trapping-removal study to describe the ecological characteristics of urban rat populations in an inner-city neighborhood of Vancouver, Canada. The study focused on factors that might influence the ecology of zoonotic pathogens in these populations and/or our understanding of that ecology. We found that rat population density varied remarkably over short geographical distances, which could explain observed spatial distributions of rat-associated zoonoses and have implications for sampling and data analysis during research and surveillance. Season appeared to influence rat population composition even within the urban environment, which could cause temporal variation in pathogen prevalence. Body mass and bite wounds, which are often used in epidemiologic analyses as simple proxies for age and aggression, were shown to be more complex than previously thought. Finally, we found that factors associated with trapping can determine the size and composition of sampled rat population, and thus influence inferences made about the source population. These findings may help guide future studies of rats and rat-associated zoonoses.
PMCID: PMC3960114  PMID: 24646877
2.  Identification of Salivary Gland Proteins Depleted after Blood Feeding in the Malaria Vector Anopheles campestris-like Mosquitoes (Diptera: Culicidae) 
PLoS ONE  2014;9(3):e90809.
Malaria sporozoites must invade the salivary glands of mosquitoes for maturation before transmission to vertebrate hosts. The duration of the sporogonic cycle within the mosquitoes ranges from 10 to 21 days depending on the parasite species and temperature. During blood feeding salivary gland proteins are injected into the vertebrate host, along with malaria sporozoites in the case of an infected mosquito. To identify salivary gland proteins depleted after blood feeding of female Anopheles campestris-like, a potential malaria vector of Plasmodium vivax in Thailand, two-dimensional gel electrophoresis and nano-liquid chromatography-mass spectrometry techniques were used. Results showed that 19 major proteins were significantly depleted in three to four day-old mosquitoes fed on a first blood meal. For the mosquitoes fed the second blood meal on day 14 after the first blood meal, 14 major proteins were significantly decreased in amount. The significantly depleted proteins in both groups included apyrase, 5′-nucleotidase/apyrase, D7, D7-related 1, short form D7r1, gSG6, anti-platelet protein, serine/threonine-protein kinase rio3, putative sil1, cyclophilin A, hypothetical protein Phum_PHUM512530, AGAP007618-PA, and two non-significant hit proteins. To our knowledge, this study presents for the first time the salivary gland proteins that are involved in the second blood feeding on the day corresponding to the transmission period of the sporozoites to new mammalian hosts. This information serves as a basis for future work concerning the possible role of these proteins in the parasite transmission and the physiological processes that occur during the blood feeding.
PMCID: PMC3944739  PMID: 24599352
3.  Characterization of the Bas-Congo Virus Glycoprotein and Its Function in Pseudotyped Viruses 
Journal of Virology  2013;87(17):9558-9568.
Bas-Congo virus (BASV) is a novel rhabdovirus recently identified from a patient with acute hemorrhagic fever in the Bas-Congo province of the Democratic Republic of Congo (DRC). Here we show that the BASV glycoprotein (BASV-G) can be successfully used to pseudotype glycoprotein-deficient vesicular stomatitis virus (VSV), allowing studies of BASV-G-driven membrane fusion and viral entry into target cells without replication-competent virus. BASV-G displayed broad tissue and species tropism in vitro, and BASV-G-mediated membrane fusion was pH dependent. The conformational changes induced in BASV-G by acidification were fully reversible and did not lead to inactivation of the viral fusion protein. Our data combined with comparative sequence similarity analyses suggest that BASV-G shares structural and functional features with other rhabdovirus glycoproteins and falls into the group of class III viral fusion proteins. However, activation of BASV-G-driven fusion required a lower pH and higher temperatures than did VSV-G-mediated fusion. Moreover, in contrast to VSV-G, mature BASV-G in VSV pseudotypes consists of a mixture of high-mannose and complex glycans that enables it to bind to certain C-type lectins, thereby enhancing its attachment to target cells. Taken together, the results presented in this study will facilitate future investigations of BASV-G-mediated cell entry and its inhibition in the absence of an infectious cell culture assay for BASV and at lower biosafety levels. Moreover, serology testing based on BASV-G pseudotype neutralization can be used to uncover the prevalence and importance of BASV as a potential novel human pathogen in the DRC and throughout Central Africa.
PMCID: PMC3754090  PMID: 23785218
4.  Reverse Zoonotic Disease Transmission (Zooanthroponosis): A Systematic Review of Seldom-Documented Human Biological Threats to Animals 
PLoS ONE  2014;9(2):e89055.
Research regarding zoonotic diseases often focuses on infectious diseases animals have given to humans. However, an increasing number of reports indicate that humans are transmitting pathogens to animals. Recent examples include methicillin-resistant Staphylococcus aureus, influenza A virus, Cryptosporidium parvum, and Ascaris lumbricoides. The aim of this review was to provide an overview of published literature regarding reverse zoonoses and highlight the need for future work in this area.
An initial broad literature review yielded 4763 titles, of which 4704 were excluded as not meeting inclusion criteria. After careful screening, 56 articles (from 56 countries over three decades) with documented human-to-animal disease transmission were included in this report.
In these publications, 21 (38%) pathogens studied were bacterial, 16 (29%) were viral, 12 (21%) were parasitic, and 7 (13%) were fungal, other, or involved multiple pathogens. Effected animals included wildlife (n = 28, 50%), livestock (n = 24, 43%), companion animals (n = 13, 23%), and various other animals or animals not explicitly mentioned (n = 2, 4%). Published reports of reverse zoonoses transmission occurred in every continent except Antarctica therefore indicating a worldwide disease threat.
As we see a global increase in industrial animal production, the rapid movement of humans and animals, and the habitats of humans and wild animals intertwining with great complexity, the future promises more opportunities for humans to cause reverse zoonoses. Scientific research must be conducted in this area to provide a richer understanding of emerging and reemerging disease threats. As a result, multidisciplinary approaches such as One Health will be needed to mitigate these problems.
PMCID: PMC3938448  PMID: 24586500
5.  Is the Epidemiology of Alkhurma Hemorrhagic Fever Changing? : A Three-Year Overview in Saudi Arabia 
PLoS ONE  2014;9(2):e85564.
The epidemiology of Alkhurma hemorrhagic fever disease is yet to be fully understood since the virus was isolated in 1994 in the Kingdom of Saudi Arabia.
Preventive Medicine department, Ministry of Health, Kingdom of Saudi Arabia.
Retrospective analysis of all laboratory confirmed cases of Alkhurma hemorrhagic fever disease collected through active and passive surveillance from 1st-January 2009 to December, 31, 2011.
Alkhurma hemorrhagic fever (AHFV) disease increased from 59 cases in 2009 to 93 cases in 2011. Cases are being discovered outside of the region where it was initially diagnosed in Saudi Arabia. About a third of cases had no direct contact with animals or its products. Almost all cases had gastro-intestinal symptoms. Case fatality rate was less than 1%.
Findings in this study showed the mode of transmission of AHFV virus may not be limited to direct contact with animals or its products. Gastro-intestinal symptoms were not previously documented. Observed low case fatality rate contradicted earlier reports. Close monitoring of the epidemiology of AHFV is recommended to aid appropriate diagnosis. Housewives are advised to wear gloves when handling animals and animal products as a preventive measure.
PMCID: PMC3916301  PMID: 24516520
6.  Genomic Variability of Monkeypox Virus among Humans, Democratic Republic of the Congo 
Emerging Infectious Diseases  2014;20(2):232-239.
Health authorities should be vigilant for this rapidly evolving virus.
Monkeypox virus is a zoonotic virus endemic to Central Africa. Although active disease surveillance has assessed monkeypox disease prevalence and geographic range, information about virus diversity is lacking. We therefore assessed genome diversity of viruses in 60 samples obtained from humans with primary and secondary cases of infection from 2005 through 2007. We detected 4 distinct lineages and a deletion that resulted in gene loss in 10 (16.7%) samples and that seemed to correlate with human-to-human transmission (p = 0.0544). The data suggest a high frequency of spillover events from the pool of viruses in nonhuman animals, active selection through genomic destabilization and gene loss, and increased disease transmissibility and severity. The potential for accelerated adaptation to humans should be monitored through improved surveillance.
PMCID: PMC3901482  PMID: 24457084
Monkeypox virus; genomic diversity; emerging infectious disease; genomic reduction; gene loss; Democratic Republic of the Congo; viruses
7.  Culicoides Midge Bites Modulate the Host Response and Impact on Bluetongue Virus Infection in Sheep 
PLoS ONE  2014;9(1):e83683.
Many haematophagous insects produce factors that help their blood meal and coincidently favor pathogen transmission. However nothing is known about the ability of Culicoides midges to interfere with the infectivity of the viruses they transmit. Among these, Bluetongue Virus (BTV) induces a hemorrhagic fever- type disease and its recent emergence in Europe had a major economical impact. We observed that needle inoculation of BTV8 in the site of uninfected C. nubeculosus feeding reduced viraemia and clinical disease intensity compared to plain needle inoculation. The sheep that developed the highest local inflammatory reaction had the lowest viral load, suggesting that the inflammatory response to midge bites may participate in the individual sensitivity to BTV viraemia development. Conversely compared to needle inoculation, inoculation of BTV8 by infected C. nubeculosus bites promoted viraemia and clinical symptom expression, in association with delayed IFN- induced gene expression and retarded neutralizing antibody responses. The effects of uninfected and infected midge bites on BTV viraemia and on the host response indicate that BTV transmission by infected midges is the most reliable experimental method to study the physio-pathological events relevant to a natural infection and to pertinent vaccine evaluation in the target species. It also leads the way to identify the promoting viral infectivity factors of infected Culicoides in order to possibly develop new control strategies against BTV and other Culicoides transmitted viruses.
PMCID: PMC3885445  PMID: 24421899
8.  A gorilla reservoir for human T-lymphotropic virus type 4 
Of the seven known species of human retroviruses only one, human T-cell lymphotropic virus type 4 (HTLV-4), lacks a known animal reservoir. We report the largest screening for simian T-cell lymphotropic virus (STLV-4) to date in a wide range of captive and wild non-human primate (NHP) species from Cameroon. Among the 681 wild and 426 captive NHPs examined, we detected STLV-4 infection only among gorillas by using HTLV-4-specific quantitative polymerase chain reaction. The large number of samples analyzed, the diversity of NHP species examined, the geographic distribution of infected animals relative to the known HTLV-4 case, as well as detailed phylogenetic analyses on partial and full genomes, indicate that STLV-4 is endemic to gorillas, and that rather than being an ancient virus among humans, HTLV-4 emerged from a gorilla reservoir, likely through the hunting and butchering of wild gorillas. Our findings shed further light on the importance of gorillas as keystone reservoirs for the evolution and emergence of human infectious diseases and provide a clear course for preventing HTLV-4 emergence through management of human contact with wild gorillas, the development of improved assays for HTLV-4/STLV-4 detection and the ongoing monitoring of STLV-4 among gorillas and for HTLV-4 zoonosis among individuals exposed to gorilla populations.
PMCID: PMC3913825
gorilla; human T-lymphotropic virus; primate; retrovirus; simian T-lymphotropic virus; zoonoses
9.  Use of Anti-Aedes aegypti Salivary Extract Antibody Concentration to Correlate Risk of Vector Exposure and Dengue Transmission Risk in Colombia 
PLoS ONE  2013;8(12):e81211.
Norte de Santander is a region in Colombia with a high incidence of dengue virus (DENV). In this study, we examined the serum concentration of anti-Aedes salivary gland extract (SGE) antibodies as a biomarker of DENV infection and transmission, and assessed the duration of anti-SGE antibody concentration after exposure to the vector ceased. We also determined whether SGE antibody concentration could differentiate between positive and negative DENV infected individuals and whether there are differences in exposure for each DENV serotype. We observed a significant decrease in the concentration of IgG antibodies at least 40 days after returning to an “Ae. aegypti-free” area. In addition, we found significantly higher anti-SGE IgG concentrations in DENV positive patients with some difference in exposure to mosquito bites among DENV serotypes. We conclude that the concentration of IgG antibodies against SGE is an accurate indicator of risk of dengue virus transmission and disease presence.
PMCID: PMC3846924  PMID: 24312537
10.  Midgut Microbial Community of Culex quinquefasciatus Mosquito Populations from India 
PLoS ONE  2013;8(11):e80453.
The mosquito Culex quinquefasciatus is a ubiquitous species that serves as a major vector for west nile virus and lymphatic filariasis. Ingestion of bloodmeal by females triggers a series of physiological processes in the midgut and also exposes them to infection by these pathogens. The bacteria normally harbored in the midgut are known to influence physiology and can also alter the response to various pathogens. The midgut bacteria in female Cx. quinquefasciatus mosquitoes collected over a large geographical area from India was studied. Examination of 16S ribosomal DNA amplicons from culturable microflora revealed the presence of 83 bacterial species belonging to 31 bacterial genera. All of these species belong to three phyla i.e. Proteobacteria, Firmicutes and Actinobacteria. Phylum Proteobacteria was the most dominant phylum (37 species), followed by Firmicutes (33 species) and Actinobacteria (13 species). Phylum Proteobacteria, was dominated by members of γ-proteobacteria class. The genus Staphylococcus was the largest genus represented by 11 species whereas Enterobacter was the most prevalent genus and recovered from all the field stations except Leh. Highest bacterial prevalence was observed from Bhuj (22 species) followed by Nagrota (18 species), Masimpur (18 species) and Hathigarh (16 species). Whereas, least species were observed from Leh (8 species). It has been observed that individual mosquito harbor extremely diverse gut bacteria and have very small overlap bacterial taxa in their gut. This variation in midgut microbiota may be one of the factors responsible for variation in disease transmission rates or vector competence within mosquito population. The present data strongly encourage further investigations to verify the potential role of the detected bacteria in mosquito for the transmission of lymphatic filariasis and west nile virus. To the best of our knowledge this is the first study on midgut microbiota of wild Cx. quinquefasciatus from over a large geographical area.
PMCID: PMC3843677  PMID: 24312223
11.  Population Seroprevalence Study after a West Nile Virus Lineage 2 Epidemic, Greece, 2010 
PLoS ONE  2013;8(11):e80432.
During summer 2010, 262 human cases including 35 deaths from West Nile virus (WNV) infection were reported from Central Macedonia, Greece. Evidence from mosquitoes, birds and blood donors demonstrated that the epidemic was caused by WNV lineage 2, which until recently was considered of low virulence. We conducted a household seroprevalence study to estimate the spread of infection in the population during the epidemic, ascertain the relationship of infection to clinical disease, and identify risk factors for infection.
We used a two-stage cluster design to select a random sample of residents aged ≥18 years in the outbreak epicentre. We collected demographic, medical, and risk factor data using standard questionnaires and environmental checklists, and tested serum samples for presence of WNV IgG and IgM antibodies using ELISA.
Overall, 723 individuals participated in the study, and 644 blood samples were available. Weighted seropositivity for IgG antibodies was 5.8% (95% CI: 3.8–8.6; n=41). We estimated that about 1 in 130 (1:141 to 1:124) infected individuals developed WNV neuroinvasive disease, and approximately 18% had clinical manifestations attributable to their infection. Risk factors for infection reflected high exposure to mosquitoes; rural residents were particularly at risk (prevalence ratio: 8.2, 95% CI: 1.1–58.7).
This study adds to the evidence that WNV lineage 2 strains can cause significant illness, demonstrating ratios of infection to clinical disease similar to those found previously for WNV lineage 1.
PMCID: PMC3832368  PMID: 24260390
12.  Viral Latency in Blood and Saliva of Simian Foamy Virus-Infected Humans 
PLoS ONE  2013;8(10):e77072.
Simian foamy viruses (SFV) are widespread retroviruses among non-human primates (NHP). SFV actively replicate in the oral cavity and can be transmitted to humans through NHP bites, giving rise to a persistent infection. We aimed at studying the natural history of SFV infection in human. We have analyzed viral load and gene expression in 14 hunters from Cameroon previously shown to be infected with a gorilla SFV strain. Viral DNA could be detected by quantitative polymerase chain reaction (q-PCR) targeting the pol-in region, in most samples of peripheral blood mononuclear cells (PBMCs) (7.1 ± 6.0 SFV DNA copies/105 PBMCs) and saliva (2.4 ± 4.3 SFV DNA copies/105 cells) derived from the hunters. However, quantitative real-time reverse-transcription polymerase chain reaction (RT)-qPCR revealed the absence of SFV viral gene expression in both PBMCs and saliva, suggesting that SFV was latent in the human samples. Our study demonstrates that a latent infection can occur in humans and persist for years, both in PBMCs and saliva. Such a scenario may contribute to the putative lack of secondary human-to-human transmissions of SFV.
PMCID: PMC3792900  PMID: 24116202
13.  A Single Amino Acid Substitution in the Core Protein of West Nile Virus Increases Resistance to Acidotropic Compounds 
PLoS ONE  2013;8(7):e69479.
West Nile virus (WNV) is a worldwide distributed mosquito-borne flavivirus that naturally cycles between birds and mosquitoes, although it can infect multiple vertebrate hosts including horses and humans. This virus is responsible for recurrent epidemics of febrile illness and encephalitis, and has recently become a global concern. WNV requires to transit through intracellular acidic compartments at two different steps to complete its infectious cycle. These include fusion between the viral envelope and the membrane of endosomes during viral entry, and virus maturation in the trans-Golgi network. In this study, we followed a genetic approach to study the connections between viral components and acidic pH. A WNV mutant with increased resistance to the acidotropic compound NH4Cl, which blocks organelle acidification and inhibits WNV infection, was selected. Nucleotide sequencing revealed that this mutant displayed a single amino acid substitution (Lys 3 to Glu) on the highly basic internal capsid or core (C) protein. The functional role of this replacement was confirmed by its introduction into a WNV infectious clone. This single amino acid substitution also increased resistance to other acidification inhibitor (concanamycin A) and induced a reduction of the neurovirulence in mice. Interestingly, a naturally occurring accompanying mutation found on prM protein abolished the resistant phenotype, supporting the idea of a genetic crosstalk between the internal C protein and the external glycoproteins of the virion. The findings here reported unveil a non-previously assessed connection between the C viral protein and the acidic pH necessary for entry and proper exit of flaviviruses.
PMCID: PMC3715472  PMID: 23874963
14.  Chemical Effects in the Separation Process of a Differential Mobility / Mass Spectrometer System 
Analytical chemistry  2010;82(5):1867-1880.
In differential mobility spectrometry (DMS, also referred to as high field asymmetric waveform ion mobility spectrometry, FAIMS), ions are separated on the basis of the difference in their mobility under high and low electric fields. The addition of polar modifiers to the gas transporting the ions through a DMS enhances the formation of clusters in a field-dependent way and thus amplifies the high and low field mobility difference resulting in increased peak capacity and separation power. Observations of the increase in mobility field dependence are consistent with a cluster formation model, also referred to as the dynamic cluster-decluster model. The uniqueness of chemical interactions that occur between an ion and cluster-forming neutrals increases the selectivity of the separation and the depression of low-field mobility relative to high-field mobility increases the compensation voltage and peak capacity. The effect of polar modifiers on the peak capacity across a broad range of chemicals has been investigated. We discuss the theoretical underpinnings which explain the observed effects. In contrast to the result from polar modifiers, we find that using mixtures of inert gases as the transport gas improve resolution by reducing peak width but has very little effect on peak capacity or selectivity. Inert gases do not cluster and thus do not reduce low field mobility relative to high-field mobility. The observed changes in the differential mobility α parameter exhibited by different classes of compounds when the transport gas contains polar modifiers or has a significant fraction of inert gas can be explained on the basis of the physical mechanisms involved in the separation processes.
PMCID: PMC3703922  PMID: 20121077
15.  Control of Chemical Effects in the Separation Process of a Differential Mobility / Mass Spectrometer System 
Differential mobility spectrometry (DMS) separates ions on the basis of the difference in their migration rates under high versus low electric fields. Several models describing the physical nature of this field mobility dependence have been proposed but emerging as a dominant effect is the clusterization model sometimes referred to as the dynamic cluster-decluster model. DMS resolution and peak capacity is strongly influenced by the addition of modifiers which results in the formation and dissociation of clusters. This process increases selectivity due to the unique chemical interactions that occur between an ion and neutral gas phase molecules. It is thus imperative to bring the parameters influencing the chemical interactions under control and find ways to exploit them in order to improve the analytical utility of the device. In this paper we describe three important areas that need consideration in order to stabilize and capitalize on the chemical processes that dominate a DMS separation. The first involves means of controlling the dynamic equilibrium of the clustering reactions with high concentrations of specific reagents. The second area involves a means to deal with the unwanted heterogeneous cluster ion populations emitted from the electrospray ionization process that degrade resolution and sensitivity. The third involves fine control of parameters that affect the fundamental collision processes, temperature and pressure.
PMCID: PMC3672227  PMID: 20065515
16.  Rabies Virus Infection in Eptesicus fuscus Bats Born in Captivity (Naïve Bats) 
PLoS ONE  2013;8(5):e64808.
The study of rabies virus infection in bats can be challenging due to quarantine requirements, husbandry concerns, genetic differences among animals, and lack of medical history. To date, all rabies virus (RABV) studies in bats have been performed in wild caught animals. Determining the RABV exposure history of a wild caught bat based on the presence or absence of viral neutralizing antibodies (VNA) may be misleading. Previous studies have demonstrated that the presence of VNA following natural or experimental inoculation is often ephemeral. With this knowledge, it is difficult to determine if a seronegative, wild caught bat has been previously exposed to RABV. The influence of prior rabies exposure in healthy, wild caught bats is unknown. To investigate the pathogenesis of RABV infection in bats born in captivity (naïve bats), naïve bats were inoculated intramuscularly with one of two Eptesicus fuscus rabies virus variants, EfV1 or EfV2. To determine the host response to a heterologous RABV, a separate group of naïve bats were inoculated with a Lasionycteris noctivagans RABV (LnV1). Six months following the first inoculation, all bats were challenged with EfV2. Our results indicate that naïve bats may have some level of innate resistance to intramuscular RABV inoculation. Additionally, naïve bats inoculated with the LnV demonstrated the lowest clinical infection rate of all groups. However, primary inoculation with EfV1 or LnV did not appear to be protective against a challenge with the more pathogenic EfV2.
PMCID: PMC3669413  PMID: 23741396
17.  Phenotypic Dissection of a Plasmodium-Refractory Strain of Malaria Vector Anopheles stephensi: The Reduced Susceptibility to P. berghei and P. yoelii 
PLoS ONE  2013;8(5):e63753.
Anopheline mosquitoes are the major vectors of human malaria. Parasite-mosquito interactions are a critical aspect of disease transmission and a potential target for malaria control. Current investigations into parasite-mosquito interactions frequently assume that genetically resistant and susceptible mosquitoes exist in nature. Therefore, comparisons between the Plasmodium susceptibility profiles of different mosquito species may contribute to a better understanding of vectorial capacity. Anopheles stephensi is an important malaria vector in central and southern Asia and is widely used as a laboratory model of parasite transmission due to its high susceptibility to Plasmodium infection. In the present study, we identified a rodent malaria-refractory strain of A. stephensi mysorensis (Ehime) by comparative study of infection susceptibility. A very low number of oocysts develop in Ehime mosquitoes infected with P. berghei and P. yoelii, as determined by evaluation of developed oocysts on the basal lamina. A stage-specific study revealed that this reduced susceptibility was due to the impaired formation of ookinetes of both Plasmodium species in the midgut lumen and incomplete crossing of the midgut epithelium. There were no apparent abnormalities in the exflagellation of male parasites in the ingested blood or the maturation of oocysts after the rounding up of the ookinetes. Overall, these results suggest that invasive-stage parasites are eliminated in both the midgut lumen and epithelium in Ehime mosquitoes by strain-specific factors that remain unknown. The refractory strain newly identified in this report would be an excellent study system for investigations into novel parasite-mosquito interactions in the mosquito midgut.
PMCID: PMC3662785  PMID: 23717475
18.  Lectin-Dependent Enhancement of Ebola Virus Infection via Soluble and Transmembrane C-type Lectin Receptors 
PLoS ONE  2013;8(4):e60838.
Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active infections. Our findings confirm our hypothesis that the pressure of infectious diseases may have contributed in part to evolutionary selection of MBL mutant haplotypes.
PMCID: PMC3614905  PMID: 23573288
19.  Identification of a Novel Human Papillomavirus by Metagenomic Analysis of Samples from Patients with Febrile Respiratory Illness 
PLoS ONE  2013;8(3):e58404.
As part of a virus discovery investigation using a metagenomic approach, a highly divergent novel Human papillomavirus type was identified in pooled convenience nasal/oropharyngeal swab samples collected from patients with febrile respiratory illness. Phylogenetic analysis of the whole genome and the L1 gene reveals that the new HPV identified in this study clusters with previously described gamma papillomaviruses, sharing only 61.1% (whole genome) and 63.1% (L1) sequence identity with its closest relative in the Papillomavirus episteme (PAVE) database. This new virus was named HPV_SD2 pending official classification. The complete genome of HPV-SD2 is 7,299 bp long (36.3% G/C) and contains 7 open reading frames (L2, L1, E6, E7, E1, E2 and E4) and a non-coding long control region (LCR) between L1 and E6. The metagenomic procedures, coupled with the bioinformatic methods described herein are well suited to detect small circular genomes such as those of human papillomaviruses.
PMCID: PMC3600855  PMID: 23554892
20.  Species' Life-History Traits Explain Interspecific Variation in Reservoir Competence: A Possible Mechanism Underlying the Dilution Effect 
PLoS ONE  2013;8(1):e54341.
Hosts species for multi-host pathogens show considerable variation in the species' reservoir competence, which is usually used to measure species' potential to maintain and transmit these pathogens. Although accumulating research has proposed a trade-off between life-history strategies and immune defences, only a few studies extended this to host species' reservoir competence. Using a phylogenetic comparative approach, we studied the relationships between some species' life-history traits and reservoir competence in three emerging infectious vector-borne disease systems, namely Lyme disease, West Nile Encephalitis (WNE) and Eastern Equine Encephalitis (EEE). The results showed that interspecific variation in reservoir competence could be partly explained by the species' life histories. Species with larger body mass (for hosts of Lyme disease and WNE) or smaller clutch size (for hosts of EEE) had a higher reservoir competence. Given that both larger body mass and smaller clutch size were linked to higher extinction risk of local populations, our study suggests that with decreasing biodiversity, species with a higher reservoir competence are more likely to remain in the community, and thereby increase the risk of transmitting these pathogens, which might be a possible mechanism underlying the dilution effect.
PMCID: PMC3554779  PMID: 23365661
21.  Visualizing Non Infectious and Infectious Anopheles gambiae Blood Feedings in Naive and Saliva-Immunized Mice 
PLoS ONE  2012;7(12):e50464.
Anopheles gambiae is a major vector of malaria and lymphatic filariasis. The arthropod-host interactions occurring at the skin interface are complex and dynamic. We used a global approach to describe the interaction between the mosquito (infected or uninfected) and the skin of mammals during blood feeding.
Intravital video microscopy was used to characterize several features during blood feeding. The deposition and movement of Plasmodium berghei sporozoites in the dermis were also observed. We also used histological techniques to analyze the impact of infected and uninfected feedings on the skin cell response in naive mice.
The mouthparts were highly mobile within the skin during the probing phase. Probing time increased with mosquito age, with possible effects on pathogen transmission. Repletion was achieved by capillary feeding. The presence of sporozoites in the salivary glands modified the behavior of the mosquitoes, with infected females tending to probe more than uninfected females (86% versus 44%). A white area around the tip of the proboscis was observed when the mosquitoes fed on blood from the vessels of mice immunized with saliva. Mosquito feedings elicited an acute inflammatory response in naive mice that peaked three hours after the bite. Polynuclear and mast cells were associated with saliva deposits. We describe the first visualization of saliva in the skin by immunohistochemistry (IHC) with antibodies directed against saliva. Both saliva deposits and sporozoites were detected in the skin for up to 18 h after the bite.
This study, in which we visualized the probing and engorgement phases of Anopheles gambiae blood meals, provides precise information about the behavior of the insect as a function of its infection status and the presence or absence of anti-saliva antibodies. It also provides insight into the possible consequences of the inflammatory reaction for blood feeding and pathogen transmission.
PMCID: PMC3521732  PMID: 23272060
22.  Impact of Mosquito Bites on Asexual Parasite Density and Gametocyte Prevalence in Asymptomatic Chronic Plasmodium falciparum Infections and Correlation with IgE and IgG Titers 
Infection and Immunity  2012;80(6):2240-2246.
An immunomodulatory role of arthropod saliva has been well documented, but evidence for an effect on Plasmodium sp. infectiousness remains controversial. Mosquito saliva may orient the immune response toward a Th2 profile, thereby priming a Th2 response against subsequent antigens, including Plasmodium. Orientation toward a Th1 versus a Th2 profile promotes IgG and IgE proliferation, respectively, where the former is crucial for the development of an efficient antiparasite immune response. Here we assessed the direct effect of mosquito bites on the density of Plasmodium falciparum asexual parasites and the prevalence of gametocytes in chronic, asymptomatic infections in a longitudinal cohort study of seasonal transmission. We additionally correlated these parasitological measures with IgE and IgG antiparasite and anti-salivary gland extract titers. The mosquito biting density was positively correlated with the asexual parasite density but not asexual parasite prevalence and was negatively correlated with gametocyte prevalence. Individual anti-salivary gland IgE titers were also negatively correlated with gametocyte carriage and were strongly positively correlated with antiparasite IgE titers, consistent with the hypothesis that mosquito bites predispose individuals to develop an IgE antiparasite response. We provide evidence that mosquito bites have an impact on asymptomatic infections and differentially so for the production of asexual and sexual parasites. An increased research focus on the immunological impact of mosquito bites during asymptomatic infections is warranted, to establish whether strategies targeting the immune response to saliva can reduce the duration of infection and the onward transmission of the parasite.
PMCID: PMC3370602  PMID: 22451520
23.  Nonprimate Hepaciviruses in Domestic Horses, United Kingdom 
Emerging Infectious Diseases  2012;18(12):1976-1982.
Viruses related to human hepatitis C virus infect horses in the United Kingdom without evidence of hepatic or other systemic disease.
Although the origin of hepatitis C virus infections in humans remains undetermined, a close homolog of this virus, termed canine hepacivirus (CHV) and found in respiratory secretions of dogs, provides evidence for a wider distribution of hepaciviruses in mammals. We determined frequencies of active infection among dogs and other mammals in the United Kingdom. Samples from dogs (46 respiratory, 99 plasma, 45 autopsy samples) were CHV negative by PCR. Screening of 362 samples from cats, horses, donkeys, rodents, and pigs identified 3 (2%) positive samples from 142 horses. These samples were genetically divergent from CHV and nonprimate hepaciviruses that horses were infected with during 2012 in New York state, USA. Investigation of infected horses demonstrated nonprimate hepacivirus persistence, high viral loads in plasma (105–107 RNA copies/mL), and liver function test results usually within reference ranges, although several values ranged from high normal to mildly elevated. Disease associations and host range of nonprimate hepaciviruses warrant further investigation.
PMCID: PMC3557883  PMID: 23171728
hepatitis C virus; viruses; Equus ferus caballus; Canis familiaris; canine; hepacivirus; CHV; zoonosis; evolution; primate; viral hepatitis; horse; dog; United Kingdom; non-primate; nonprimate; hepacivirus; NPHV; gb virus b; gbv-b
24.  Ebola Virus Genome Plasticity as a Marker of Its Passaging History: A Comparison of In Vitro Passaging to Non-Human Primate Infection 
PLoS ONE  2012;7(11):e50316.
To identify polymorphic sites that could be used as biomarkers of Ebola virus passage history, we repeatedly amplified Ebola virus (Kikwit variant) in vitro and in vivo and performed deep sequencing analysis of the complete genomes of the viral subpopulations. We then determined the sites undergoing selection during passage in Vero E6 cells. Four locations within the Ebola virus Kikwit genome were identified that together segregate cell culture-passaged virus and virus obtained from infected non-human primates. Three of the identified sites are located within the glycoprotein gene (GP) sequence: the poly-U (RNA editing) site at position 6925, as well as positions 6677, and 6179. One site was found in the VP24 gene at position 10833. In all cases, in vitro and in vivo, both populations (majority and minority variants) were maintained in the viral swarm, with rapid selections occurring after a few passages or infections. This analysis approach will be useful to differentiate whether filovirus stocks with unknown history have been passaged in cell culture and may support filovirus stock standardization for medical countermeasure development.
PMCID: PMC3509072  PMID: 23209706
25.  Tsetse Salivary Gland Proteins 1 and 2 Are High Affinity Nucleic Acid Binding Proteins with Residual Nuclease Activity 
PLoS ONE  2012;7(10):e47233.
Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans) saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2) display DNA/RNA non-specific, high affinity nucleic acid binding with KD values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents.
PMCID: PMC3479092  PMID: 23110062

Results 1-25 (75)