Search tips
Search criteria

Results 1-23 (23)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Localization of Sodium Channel Subtypes in Mouse Ventricular Myocytes Using Quantitative Immunocytochemistry 
Journal of molecular and cellular cardiology  2013;64:10.1016/j.yjmcc.2013.08.004.
Voltage-gated sodium channels are responsible for the rising phase of the action potential in cardiac muscle. Previously, both TTX-sensitive neuronal sodium channels (NaV1.1, NaV1.2, NaV1.3, NaV1.4 and NaV1.6) and the TTX-resistant cardiac sodium channel (NaV1.5) have been detected in cardiac myocytes, but relative levels of protein expression of the isoforms were not determined. Using a quantitative approach, we analyzed z-series of confocal microscopy images from individual mouse myocytes stained with either anti-NaV1.1, anti-NaV1.2, anti-NaV1.3, anti-NaV1.4, anti-NaV1.5, or anti-NaV1.6 antibodies and calculated the relative intensity of staining for these sodium channel isoforms. Our results indicate that the TTX-sensitive channels represented approximately 23% of the total channels, whereas the TTX-resistant NaV1.5 channel represented 77% of the total channel staining in mouse ventricular myocytes. These ratios are consistent with previous electrophysiological studies in mouse ventricular myocytes. NaV1.5 was located at the cell surface, with high density at the intercalated disc, but was absent from the transverse (t)-tubular system, suggesting that these channels support surface conduction and inter-myocyte transmission. Low-level cell surface staining of NaV1.4 and NaV1.6 channels suggest a minor role in surface excitation and conduction. Conversely, NaV1.1 and NaV1.3 channels are localized to the t-tubules and are likely to support t-tubular transmission of the action potential to the myocyte interior. This quantitative immunocytochemical approach for assessing sodium channel density and localization provides a more precise view of the relative importance and possible roles of these individual sodium channel protein isoforms in mouse ventricular myocytes and may be applicable to other species and cardiac tissue types.
PMCID: PMC3851329  PMID: 23982034
2.  Differential regulation of CaV1.2 channels by cAMP-dependent protein kinase bound to A-kinase anchoring proteins 15 and 79/150 
The Journal of General Physiology  2014;143(3):315-324.
AKAP79/150 and AKAP15 exert functionally antagonistic effects on CaV1.2 channels.
The CaV1.1 and CaV1.2 voltage-gated calcium channels initiate excitation-contraction coupling in skeletal and cardiac myocytes, excitation-transcription coupling in neurons, and many other cellular processes. Up-regulation of their activity by the β-adrenergic–PKA signaling pathway increases these physiological responses. PKA up-regulation of CaV1.2 activity can be reconstituted in a transfected cell system expressing CaV1.2Δ1800 truncated at the in vivo proteolytic processing site, the distal C-terminal domain (DCT; CaV1.2[1801–2122]), the auxiliary α2δ and β subunits of CaV1.2 channels, and A-kinase anchoring protein-15 (AKAP15), which binds to a site in the DCT. AKAP79/150 binds to the same site in the DCT as AKAP15. Here we report that AKAP79 is ineffective in supporting up-regulation of CaV1.2 channel activity by PKA, even though it binds to the same site in the DCT and inhibits the up-regulation of CaV1.2 channel activity supported by AKAP15. Mutation of the calcineurin-binding site in AKAP79 (AKAP79ΔPIX) allows it to support PKA-dependent up-regulation of CaV1.2 channel activity, suggesting that calcineurin bound to AKAP79 rapidly dephosphorylates CaV1.2 channels, thereby preventing their regulation by PKA. Both AKAP15 and AKAP79ΔPIX exert their regulatory effects on CaV1.2 channels in transfected cells by interaction with the modified leucine zipper motif in the DCT. Our results introduce an unexpected mode of differential regulation by AKAPs, in which binding of different AKAPs at a single site can competitively confer differential regulatory effects on the target protein by their association with different signaling proteins.
PMCID: PMC3933935  PMID: 24567507
3.  Distribution and function of sodium channel subtypes in human atrial myocardium 
Voltage-gated sodium channels composed of a pore-forming α subunit and auxiliary β subunits are responsible for the upstroke of the action potential in cardiac muscle. However, their localization and expression patterns in human myocardium have not yet been clearly defined. We used immunohistochemical methods to define the level of expression and the subcellular localization of sodium channel α and β subunits in human atrial myocytes. Nav1.2 channels are located in highest density at intercalated disks where β1 and β3 subunits are also expressed. Nav1.4 and the predominant Nav1.5 channels are located in a striated pattern on the cell surface at the z-lines together with β2 subunits. Nav1.1, Nav1.3, and Nav1.6 channels are located in scattered puncta on the cell surface in a pattern similar to β3 and β4 subunits. Nav1.5 comprised approximately 88% of the total sodium channel staining, as assessed by quantitative immunohistochemistry. Functional studies using whole cell patch-clamp recording and measurements of contractility in human atrial cells and tissue showed that TTX-sensitive (non-Nav1.5) α subunit isoforms account for up to 27% of total sodium current in human atrium and are required for maximal contractility. Overall, our results show that multiple sodium channel α and β subunits are differentially localized in subcellular compartments in human atrial myocytes, suggesting that they play distinct roles in initiation and conduction of the action potential and in excitation–contraction coupling. TTX-sensitive sodium channel isoforms, even though expressed at low levels relative to TTX-sensitive Nav1.5, contribute substantially to total cardiac sodium current and are required for normal contractility. This article is part of a Special Issue entitled “Na+ Regulation in Cardiac Myocytes”.
PMCID: PMC3906922  PMID: 23702286
Sodium channels; Myocardium; Immunocytochemistry; Contractility
4.  Structural basis for Ca2+ selectivity of a voltage-gated calcium channel 
Nature  2013;505(7481):10.1038/nature12775.
Voltage-gated calcium (CaV) channels catalyze rapid, highly selective influx of Ca2+ into cells despite 70-fold higher extracellular concentration of Na+. How CaV channels solve this fundamental biophysical problem remains unclear. Here we report physiological and crystallographic analyses of a calcium selectivity filter constructed in the homotetrameric bacterial NaV channel NaVAb. Our results reveal interactions of hydrated Ca2+ with two high-affinity Ca2+-binding sites followed by a third lower-affinity site that would coordinate Ca2+ as it moves inward. At the selectivity filter entry, Site 1 is formed by four carboxyl side-chains, which play a critical role in determining Ca2+ selectivity. Four carboxyls plus four backbone carbonyls form Site 2, which is targeted by the blocking cations, Cd2+ and Mn2+, with single occupancy. The lower-affinity Site 3 is formed by four backbone carbonyls alone, which mediate exit into the central cavity. This pore architecture suggests a conduction pathway involving transitions between two main states with one or two hydrated Ca2+ ions bound in the selectivity filter and supports a “knock-off” mechanism of ion permeation through a stepwise-binding process. The multi-ion selectivity filter of our CaVAb model establishes a structural framework for understanding mechanisms of ion selectivity and conductance by vertebrate CaV channels.
PMCID: PMC3877713  PMID: 24270805
5.  A gating charge interaction required for late slow inactivation of the bacterial sodium channel NavAb 
The Journal of General Physiology  2013;142(3):181-190.
Voltage-gated sodium channels undergo slow inactivation during repetitive depolarizations, which controls the frequency and duration of bursts of action potentials and prevents excitotoxic cell death. Although homotetrameric bacterial sodium channels lack the intracellular linker-connecting homologous domains III and IV that causes fast inactivation of eukaryotic sodium channels, they retain the molecular mechanism for slow inactivation. Here, we examine the functional properties and slow inactivation of the bacterial sodium channel NavAb expressed in insect cells under conditions used for structural studies. NavAb activates at very negative membrane potentials (V1/2 of approximately −98 mV), and it has both an early phase of slow inactivation that arises during single depolarizations and reverses rapidly, and a late use-dependent phase of slow inactivation that reverses very slowly. Mutation of Asn49 to Lys in the S2 segment in the extracellular negative cluster of the voltage sensor shifts the activation curve ∼75 mV to more positive potentials and abolishes the late phase of slow inactivation. The gating charge R3 interacts with Asn49 in the crystal structure of NavAb, and mutation of this residue to Cys causes a similar positive shift in the voltage dependence of activation and block of the late phase of slow inactivation as mutation N49K. Prolonged depolarizations that induce slow inactivation also cause hysteresis of gating charge movement, which results in a requirement for very negative membrane potentials to return gating charges to their resting state. Unexpectedly, the mutation N49K does not alter hysteresis of gating charge movement, even though it prevents the late phase of slow inactivation. Our results reveal an important molecular interaction between R3 in S4 and Asn49 in S2 that is crucial for voltage-dependent activation and for late slow inactivation of NavAb, and they introduce a NavAb mutant that enables detailed functional studies in parallel with structural analysis.
PMCID: PMC3753604  PMID: 23980192
6.  Increased intracellular magnesium attenuates β-adrenergic stimulation of the cardiac CaV1.2 channel 
Increases in intracellular Mg2+ (Mg2+i), as observed in transient cardiac ischemia, decrease L-type Ca2+ current of mammalian ventricular myocytes (VMs). However, cardiac ischemia is associated with an increase in sympathetic tone, which could stimulate L-type Ca2+ current. Therefore, the effect of Mg2+i on L-type Ca2+ current in the context of increased sympathetic tone was unclear. We tested the impact of increased Mg2+i on the β-adrenergic stimulation of L-type Ca2+ current. Exposure of acutely dissociated adult VMs to higher Mg2+i concentrations decreased isoproterenol stimulation of the L-type Ca2+ current from 75 ± 13% with 0.8 mM Mg2+i to 20 ± 8% with 2.4 mM Mg2+i. We activated this signaling cascade at different steps to determine the site or sites of Mg2+i action. Exposure of VMs to increased Mg2+i attenuated the stimulation of L-type Ca2+ current induced by activation of adenylyl cyclase with forskolin, inhibition of cyclic nucleotide phosphodiesterases with isobutylmethylxanthine, and inhibition of phosphoprotein phosphatases I and IIA with calyculin A. These experiments ruled out significant effects of Mg2+i on these upstream steps in the signaling cascade and suggested that Mg2+i acts directly on CaV1.2 channels. One possible site of action is the EF-hand in the proximal C-terminal domain, just downstream in the signaling cascade from the site of regulation of CaV1.2 channels by protein phosphorylation on the C terminus. Consistent with this hypothesis, Mg2+i had no effect on enhancement of CaV1.2 channel activity by the dihydropyridine agonist (S)-BayK8644, which activates CaV1.2 channels by binding to a site formed by the transmembrane domains of the channel. Collectively, our results suggest that, in transient ischemia, increased Mg2+i reduces stimulation of L-type Ca2+ current by the β-adrenergic receptor by directly acting on CaV1.2 channels in a cell-autonomous manner, effectively decreasing the metabolic stress imposed on VMs until blood flow can be reestablished.
PMCID: PMC3536518  PMID: 23250865
7.  Sudden unexpected death in a mouse model of Dravet syndrome 
The Journal of Clinical Investigation  2013;123(4):1798-1808.
Sudden unexpected death in epilepsy (SUDEP) is the most common cause of death in intractable epilepsies, but physiological mechanisms that lead to SUDEP are unknown. Dravet syndrome (DS) is an infantile-onset intractable epilepsy caused by heterozygous loss-of-function mutations in the SCN1A gene, which encodes brain type-I voltage-gated sodium channel NaV1.1. We studied the mechanism of premature death in Scn1a heterozygous KO mice and conditional brain- and cardiac-specific KOs. Video monitoring demonstrated that SUDEP occurred immediately following generalized tonic-clonic seizures. A history of multiple seizures was a strong risk factor for SUDEP. Combined video-electroencephalography-electrocardiography revealed suppressed interictal resting heart-rate variability and episodes of ictal bradycardia associated with the tonic phases of generalized tonic-clonic seizures. Prolonged atropine-sensitive ictal bradycardia preceded SUDEP. Similar studies in conditional KO mice demonstrated that brain, but not cardiac, KO of Scn1a produced cardiac and SUDEP phenotypes similar to those found in DS mice. Atropine or N-methyl scopolamine treatment reduced the incidence of ictal bradycardia and SUDEP in DS mice. These findings suggest that SUDEP is caused by apparent parasympathetic hyperactivity immediately following tonic-clonic seizures in DS mice, which leads to lethal bradycardia and electrical dysfunction of the ventricle. These results have important implications for prevention of SUDEP in DS patients.
PMCID: PMC3613924  PMID: 23524966
8.  Autistic behavior in Scn1a+/− mice and rescue by enhanced GABAergic transmission 
Nature  2012;489(7416):385-390.
Haploinsufficiency of the SCN1A gene encoding voltage-gated sodium channel NaV1.1 causes Dravet Syndrome (DS), a childhood neuropsychiatric disorder including recurrent intractable seizures, cognitive deficit, and autism-spectrum behaviors. The neural mechanisms responsible for cognitive deficit and autism-spectrum behaviors in DS are poorly understood. Here we show that mice with Scn1a haploinsufficiency display hyperactivity, stereotyped behaviors, social interaction deficits, and impaired context-dependent spatial memory. Olfactory sensitivity is retained, but novel food odors and social odors are aversive to Scn1a+/− mice. GABAergic neurotransmission is specifically impaired by this mutation, and selective deletion of NaV1.1 channels in forebrain interneurons is sufficient to cause these behavioral and cognitive impairments. Remarkably, treatment with low-dose clonazepam, a positive allosteric modulator of GABAA receptors, completely rescued the abnormal social behaviors and deficits in fear memory in DS mice, demonstrating that they are caused by impaired GABAergic neurotransmission and not by neuronal damage from recurrent seizures. These results demonstrate a critical role for NaV1.1 channels in neuropsychiatric functions and provide a potential therapeutic strategy for cognitive deficit and autism-spectrum behaviors in DS.
PMCID: PMC3448848  PMID: 22914087
9.  Crystal structure of a voltage-gated sodium channel in two potentially inactivated states 
Nature  2012;486(7401):135-139.
In excitable cells, voltage-gated sodium (NaV) channels activate to initiate action potentials and then undergo fast and slow inactivation processes that terminate their ionic conductance1,2. Inactivation is a hallmark of NaV channel function and is critical for control of membrane excitability3, but the structural basis for this process has remained elusive. Here we report crystallographic snapshots of the wild-type NavAb channel from Arcobacter butzleri captured in two potentially inactivated states at 3.2 Å resolution. Compared to previous structures of NavAb S6-cysteine mutants4, the pore-lining S6 helices and the intracellular activation gate have undergone significant rearrangements in which one pair of S6 segments has collapsed toward the central pore axis and the other S6 pair has moved outward to produce a striking dimer-of-dimers configuration. An increase in global structural asymmetry is observed throughout our wild-type NavAb models, reshaping the ion selectivity filter at the extracellular end of the pore, the central cavity and its residues analogous to the mammalian drug receptor site, and the lateral pore fenestrations. The voltage-sensing domains also shift around the perimeter of the pore module in NavAb, and local structural changes identify a conserved interaction network that connects distant molecular determinants involved in NaV channel gating and inactivation. These potential inactivated-state structures provide new insights into NaV channel gating and novel avenues to drug development and therapy for a range of debilitating NaV channelopathies.
PMCID: PMC3552482  PMID: 22678296
10.  Functional Properties and Differential Neuromodulation of Nav1.6 Channels 
The voltage-gated sodium channel Nav1.6 plays unique roles in the nervous system, but its functional properties and neuromodulation are not as well established as for NaV1.2 channels. We found no significant differences in voltage-dependent activation or fast inactivation between NaV1.6 and NaV1.2 channels expressed in non-excitable cells. In contrast, the voltage dependence of slow inactivation was more positive for Nav1.6 channels, they conducted substantially larger persistent sodium currents than Nav1.2 channels, and they were much less sensitive to inhibtion by phosphorylation by cAMP-dependent protein kinase and protein kinase C. Resurgent sodium current, a hallmark of Nav1.6 channels in neurons, was not observed for NaV1.6 expressed alone or with the auxiliary β4 subunit. The unique properties of NaV1.6 channels, together with the resurgent currents that they conduct in neurons, make these channels well-suited to provide the driving force for sustained repetitive firing, a crucial property of neurons.
PMCID: PMC3433175  PMID: 18599309
11.  Regulation of Sodium Channel Activity by Phosphorylation 
Voltage-gated sodium channels carry the major inward current responsible for action potential depolarization in excitable cells as well as providing additional inward current that modulates overall excitability. Both their expression and function is under tight control of protein phosphorylation by specific kinases and phosphatases and this control is particular to each type of sodium channel. This article examines the impact and mechanism of phosphorylation for isoforms where it has been studied in detail in an attempt to delineate common features as well as differences.
PMCID: PMC3423337  PMID: 20950703
sodium channels; phosphorylation; kinase; neurotransmitter; phosphatase; ion channels
Nature  2011;475(7356):353-358.
Voltage-gated sodium channels initiate electrical signaling in excitable cells and are the molecular targets for drugs and disease mutations, but the structural basis for their voltage-dependent activation, ion selectivity, and drug block is unknown. Here, we report the crystal structure of a voltage-gated Na+-channel from Arcobacter butzleri (NavAb) captured in a closed-pore conformation with four activated voltage-sensors at 2.7 Å resolution. The arginine gating charges make multiple hydrophilic interactions within the voltage-sensor, including unanticipated hydrogen bonds to the protein backbone. Comparisons to previous open-pore potassium channel structures suggest that the voltage-sensor domains and the S4-S5 linkers dilate the central pore by pivoting together around a hinge at the base of the pore module. The NavAb selectivity filter is short, ~6.5 Å wide, and water-filled, with four acidic side-chains surrounding the narrowest part of the ion conduction pathway. This unique structure presents a high field-strength anionic coordination site, which confers Na+-selectivity through partial dehydration via direct interaction with glutamate side-chains. Fenestrations in the sides of the pore module are unexpectedly penetrated by fatty acyl chains that extend into the central cavity, and these portals are large enough for the entry of small, hydrophobic pore-blocking drugs.
PMCID: PMC3266868  PMID: 21743477
13.  Molecular Mechanism of Calcium Channel Regulation in the Fight-or-Flight Response 
Science signaling  2010;3(141):ra70.
During the fight-or-flight response, the sympathetic nervous system stimulates L-type calcium ion (Ca2+) currents conducted by CaV1 channels through activation of β-adrenergic receptors, adenylyl cyclase, and phosphorylation by adenosine 3′,5′-monophosphate–dependent protein kinase [also known as protein kinase A (PKA)], increasing contractility of skeletal and cardiac muscles. We reconstituted this regulation of cardiac CaV1.2 channels in non-muscle cells by forming an autoinhibitory signaling complex composed of CaV1.2Δ1800 (a form of the channel truncated at the in vivo site of proteolytic processing), its noncovalently associated distal carboxyl-terminal domain, the auxiliary α2δ1 and β2b subunits, and A-kinase anchoring protein 15 (AKAP15). A factor of 3.6 range of CaV1.2 channel activity was observed from a minimum in the presence of protein kinase inhibitors to a maximum upon activation of adenylyl cyclase. Basal CaV1.2 channel activity in unstimulated cells was regulated by phosphorylation of serine-1700 and threonine-1704, two residues located at the interface between the distal and the proximal carboxyl-terminal regulatory domains, whereas further stimulation of channel activity through the PKA signaling pathway only required phosphorylation of serine-1700. Our results define a conceptual framework for CaV1.2 channel regulation and identify sites of phosphorylation that regulate channel activity.
PMCID: PMC3063709  PMID: 20876873
14.  Ion permeation and block of the gating pore in the voltage sensor of NaV1.4 channels with hypokalemic periodic paralysis mutations 
The Journal of General Physiology  2010;136(2):225-236.
Hypokalemic periodic paralysis and normokalemic periodic paralysis are caused by mutations of the gating charge–carrying arginine residues in skeletal muscle NaV1.4 channels, which induce gating pore current through the mutant voltage sensor domains. Inward sodium currents through the gating pore of mutant R666G are only ∼1% of central pore current, but substitution of guanidine for sodium in the extracellular solution increases their size by 13- ± 2-fold. Ethylguanidine is permeant through the R666G gating pore at physiological membrane potentials but blocks the gating pore at hyperpolarized potentials. Guanidine is also highly permeant through the proton-selective gating pore formed by the mutant R666H. Gating pore current conducted by the R666G mutant is blocked by divalent cations such as Ba2+ and Zn2+ in a voltage-dependent manner. The affinity for voltage-dependent block of gating pore current by Ba2+ and Zn2+ is increased at more negative holding potentials. The apparent dissociation constant (Kd) values for Zn2+ block for test pulses to −160 mV are 650 ± 150 µM, 360 ± 70 µM, and 95.6 ± 11 µM at holding potentials of 0 mV, −80 mV, and −120 mV, respectively. Gating pore current is blocked by trivalent cations, but in a nearly voltage-independent manner, with an apparent Kd for Gd3+ of 238 ± 14 µM at −80 mV. To test whether these periodic paralyses might be treated by blocking gating pore current, we screened several aromatic and aliphatic guanidine derivatives and found that 1-(2,4-xylyl)guanidinium can block gating pore current in the millimolar concentration range without affecting normal NaV1.4 channel function. Together, our results demonstrate unique permeability of guanidine through NaV1.4 gating pores, define voltage-dependent and voltage-independent block by divalent and trivalent cations, respectively, and provide initial support for the concept that guanidine-based gating pore blockers could be therapeutically useful.
PMCID: PMC2912069  PMID: 20660662
15.  Cooperative regulation of Cav1.2 channels by intracellular Mg2+, the proximal C-terminal EF-hand, and the distal C-terminal domain 
L-type Ca2+ currents conducted by Cav1.2 channels initiate excitation–contraction coupling in cardiac myocytes. Intracellular Mg2+ (Mgi) inhibits the ionic current of Cav1.2 channels. Because Mgi is altered in ischemia and heart failure, its regulation of Cav1.2 channels is important in understanding cardiac pathophysiology. Here, we studied the effects of Mgi on voltage-dependent inactivation (VDI) of Cav1.2 channels using Na+ as permeant ion to eliminate the effects of permeant divalent cations that engage the Ca2+-dependent inactivation process. We confirmed that increased Mgi reduces peak ionic currents and increases VDI of Cav1.2 channels in ventricular myocytes and in transfected cells when measured with Na+ as permeant ion. The increased rate and extent of VDI caused by increased Mgi were substantially reduced by mutations of a cation-binding residue in the proximal C-terminal EF-hand, consistent with the conclusion that both reduction of peak currents and enhancement of VDI result from the binding of Mgi to the EF-hand (KD ≈ 0.9 mM) near the resting level of Mgi in ventricular myocytes. VDI was more rapid for L-type Ca2+ currents in ventricular myocytes than for Cav1.2 channels in transfected cells. Coexpression of Cavβ2b subunits and formation of an autoinhibitory complex of truncated Cav1.2 channels with noncovalently bound distal C-terminal domain (DCT) both increased VDI in transfected cells, indicating that the subunit structure of the Cav1.2 channel greatly influences its VDI. The effects of noncovalently bound DCT on peak current amplitude and VDI required Mgi binding to the proximal C-terminal EF-hand and were prevented by mutations of a key divalent cation-binding amino acid residue. Our results demonstrate cooperative regulation of peak current amplitude and VDI of Cav1.2 channels by Mgi, the proximal C-terminal EF-hand, and the DCT, and suggest that conformational changes that regulate VDI are propagated from the DCT through the proximal C-terminal EF-hand to the channel-gating mechanism.
PMCID: PMC2717695  PMID: 19596806
16.  Structure and Function of the Voltage Sensor of Sodium Channels Probed by a β-Scorpion Toxin*S 
The Journal of biological chemistry  2006;281(30):21332-21344.
Voltage sensing by voltage-gated sodium channels determines the electrical excitability of cells, but the molecular mechanism is unknown. β-Scorpion toxins bind specifically to neurotoxin receptor site 4 and induce a negative shift in the voltage dependence of activation through a voltage sensor-trapping mechanism. Kinetic analysis showed that β-scorpion toxin binds to the resting state, and subsequently the bound toxin traps the voltage sensor in the activated state in a voltage-dependent but concentration-independent manner. The rate of voltage sensor trapping can be fit by a two-step model, in which the first step is voltage-dependent and correlates with the outward gating movement of the IIS4 segment, whereas the second step is voltage-independent and results in shifted voltage dependence of activation of the channel. Mutations of Glu779 in extracellular loop IIS1–S2 and both Glu837 and Leu840 in extracellular loop IIS3–S4 reduce the binding affinity of β-scorpion toxin. Mutations of positively charged and hydrophobic amino acid residues in the IIS4 segment do not affect β-scorpion toxin binding but alter voltage dependence of activation and enhance β-scorpion toxin action. Structural modeling with the Rosetta algorithm yielded a three-dimensional model of the toxin-receptor complex with the IIS4 voltage sensor at the extracellular surface. Our results provide mechanistic and structural insight into the voltage sensor-trapping mode of scorpion toxin action, define the position of the voltage sensor in the resting state of the sodium channel, and favor voltage-sensing models in which the S4 segment spans the membrane in both resting and activated states.
PMCID: PMC1551974  PMID: 16679310
17.  Differential modulation of Cav2.1 channels by calmodulin and Ca2+-binding protein 1 
Nature neuroscience  2002;5(3):210-217.
Cav2.1 channels, which mediate P/Q-type Ca2+ currents, undergo Ca2+/calmodulin (CaM)-dependent inactivation and facilitation that can significantly alter synaptic efficacy. Here we report that the neuronal Ca2+-binding protein 1 (CaBP1) modulates Cav2.1 channels in a manner that is markedly different from modulation by CaM. CaBP1 enhances inactivation, causes a depolarizing shift in the voltage dependence of activation, and does not support Ca2+-dependent facilitation of Cav2.1 channels. These inhibitory effects of CaBP1 do not require Ca2+, but depend on the CaM-binding domain in the α1 subunit of Cav2.1 channels (α12.1). CaBP1 binds to the CaM-binding domain, co-immunoprecipitates with α12.1 from transfected cells and brain extracts, and colocalizes with α12.1 in discrete microdomains of neurons in the hippocampus and cerebellum. Our results identify an interaction between Ca2+ channels and CaBP1 that may regulate Ca2+-dependent forms of synaptic plasticity by inhibiting Ca2+ influx into neurons.
PMCID: PMC1435861  PMID: 11865310
18.  Modulation of CaV1.2 Channels by Mg2+ Acting at an EF-hand Motif in the COOH-terminal Domain 
The Journal of General Physiology  2005;126(4):311-323.
Magnesium levels in cardiac myocytes change in cardiovascular diseases. Intracellular free magnesium (Mgi) inhibits L-type Ca2+ currents through CaV1.2 channels in cardiac myocytes, but the mechanism of this effect is unknown. We hypothesized that Mgi acts through the COOH-terminal EF-hand of CaV1.2. EF-hand mutants were engineered to have either decreased (D1546A/N/S/K) or increased (K1543D and K1539D) Mg2+ affinity. In whole-cell patch clamp experiments, increased Mgi reduced both Ba2+ and Ca2+ currents conducted by wild type (WT) CaV1.2 channels expressed in tsA-201 cells with similar affinity. Exposure of WT CaV1.2 to lower Mgi (0.26 mM) increased the amplitudes of Ba2+ currents 2.6 ± 0.4–fold without effects on the voltage dependence of activation and inactivation. In contrast, increasing Mgi to 2.4 or 7.2 mM reduced current amplitude to 0.5 ± 0.1 and 0.26 ± 0.05 of the control level at 0.8 mM Mgi. The effects of Mgi on peak Ba2+ currents were approximately fit by a single binding site model with an apparent Kd of 0.65 mM. The apparent Kd for this effect of Mgi was shifted ∼3.3- to 16.5-fold to higher concentration in D1546A/N/S mutants, with only small effects on the voltage dependence of activation and inactivation. Moreover, mutant D1546K was insensitive to Mgi up to 7.2 mM. In contrast to these results, peak Ba2+ currents through the K1543D mutant were inhibited by lower concentrations of Mgi compared with WT, consistent with approximately fourfold reduction in apparent Kd for Mgi, and inhibition of mutant K1539D by Mgi was also increased comparably. In addition to these effects, voltage-dependent inactivation of K1543D and K1539D was incomplete at positive membrane potentials when Mgi was reduced to 0.26 or 0.1 mM, respectively. These results support a novel mechanism linking the COOH-terminal EF-hand with modulation of CaV1.2 channels by Mgi. Our findings expand the repertoire of modulatory interactions taking place at the COOH terminus of CaV1.2 channels, and reveal a potentially important role of Mgi binding to the COOH-terminal EF-hand in regulating Ca2+ influx in physiological and pathophysiological states.
PMCID: PMC2266622  PMID: 16157690
19.  Neutralization of Gating Charges in Domain II of the Sodium Channel α Subunit Enhances Voltage-Sensor Trapping by a β-Scorpion Toxin 
The Journal of General Physiology  2001;118(3):291-302.
β-Scorpion toxins shift the voltage dependence of activation of sodium channels to more negative membrane potentials, but only after a strong depolarizing prepulse to fully activate the channels. Their receptor site includes the S3–S4 loop at the extracellular end of the S4 voltage sensor in domain II of the α subunit. Here, we probe the role of gating charges in the IIS4 segment in β-scorpion toxin action by mutagenesis and functional analysis of the resulting mutant sodium channels. Neutralization of the positively charged amino acid residues in the IIS4 segment by mutation to glutamine shifts the voltage dependence of channel activation to more positive membrane potentials and reduces the steepness of voltage-dependent gating, which is consistent with the presumed role of these residues as gating charges. Surprisingly, neutralization of the gating charges at the outer end of the IIS4 segment by the mutations R850Q, R850C, R853Q, and R853C markedly enhances β-scorpion toxin action, whereas mutations R856Q, K859Q, and K862Q have no effect. In contrast to wild-type, the β-scorpion toxin Css IV causes a negative shift of the voltage dependence of activation of mutants R853Q and R853C without a depolarizing prepulse at holding potentials from −80 to −140 mV. Reaction of mutant R853C with 2-aminoethyl methanethiosulfonate causes a positive shift of the voltage dependence of activation and restores the requirement for a depolarizing prepulse for Css IV action. Enhancement of sodium channel activation by Css IV causes large tail currents upon repolarization, indicating slowed deactivation of the IIS4 voltage sensor by the bound toxin. Our results are consistent with a voltage-sensor–trapping model in which the β-scorpion toxin traps the IIS4 voltage sensor in its activated position as it moves outward in response to depolarization and holds it there, slowing its inward movement on deactivation and enhancing subsequent channel activation. Evidently, neutralization of R850 and R853 removes kinetic barriers to binding of the IIS4 segment by Css IV, and thereby enhances toxin-induced channel activation.
PMCID: PMC2229501  PMID: 11524459
sodium channels; Centruroides suffusus suffusus toxin IV; β-scorpion toxin; voltage sensor; voltage-dependent gating
21.  Increased Expression of the Cardiac L-type Calcium Channel in Estrogen Receptor–deficient Mice  
The Journal of General Physiology  1997;110(2):135-140.
Steroid hormones control the expression of many cellular regulators, and a role for estrogen in cardiovascular function and disease has been well documented. To address whether the activity of the L-type Ca2+ channel, a critical element in cardiac excitability and contractility, is altered by estrogen and its nuclear receptor, we examined cardiac myocytes from male mice in which the estrogen receptor gene had been disrupted (ERKO mice). Binding of dihydropyridine Ca2+ channel antagonist isradipine (PN200-110) was increased 45.6% in cardiac membranes from the ERKO mice compared to controls, suggesting that a lack of estrogen receptors in the heart increased the number of Ca2+ channels. Whole-cell patch clamp of acutely dissociated adult cardiac ventricular myocytes indicated that Ca2+ channel current was increased by 49% and action potential duration was increased by 75%. Examination of electrocardiogram parameters in ERKO mice showed a 70% increase in the QT interval without significant changes in PQ or QRS intervals. These results show that the membrane density of the cardiac L-type Ca2+ channel is regulated by the estrogen receptor and suggest that decreased estrogen may lead to an increase in the number of cardiac L-type Ca2+ channels, abnormalities in cardiac excitability, and increased risk of arrhythmia and cardiovascular disease.
PMCID: PMC2233789  PMID: 9236206
heart; ion channels; action potential; electrocardiogram
22.  Molecular Analysis of Potential Hinge Residues in the Inactivation Gate of Brain Type IIA Na+ Channels  
The Journal of General Physiology  1997;109(5):607-617.
During inactivation of Na+ channels, the intracellular loop connecting domains III and IV is thought to fold into the channel protein and occlude the pore through interaction of the hydrophobic motif isoleucine-phenylalanine-methionine (IFM) with a receptor site. We have searched for amino acid residues flanking the IFM motif which may contribute to formation of molecular hinges that allow this motion of the inactivation gate. Site-directed mutagenesis of proline and glycine residues, which often are components of molecular hinges in proteins, revealed that G1484, G1485, P1512, P1514, and P1516 are required for normal fast inactivation. Mutations of these residues slow the time course of macroscopic inactivation. Single channel analysis of mutations G1484A, G1485A, and P1512A showed that the slowing of macroscopic inactivation is produced by increases in open duration and latency to first opening. These mutant channels also show a higher probability of entering a slow gating mode in which their inactivation is further impaired. The effects on gating transitions in the pathway to open Na+ channels indicate conformational coupling of activation to transitions in the inactivation gate. The results are consistent with the hypothesis that these glycine and proline residues contribute to hinge regions which allow movement of the inactivation gate during the inactivation process of Na+ channels.
PMCID: PMC2217067  PMID: 9154907
mutagenesis; Xenopus oocyte; ion channel; rat
23.  Molecular Analysis of the Putative Inactivation Particle in the Inactivation Gate of Brain Type IIA Na+ Channels  
The Journal of General Physiology  1997;109(5):589-605.
Fast Na+ channel inactivation is thought to involve binding of phenylalanine 1489 in the hydrophobic cluster IFM in LIII-IV of the rat brain type IIA Na+ channel. We have analyzed macroscopic and single channel currents from Na+ channels with mutations within and adjacent to hydrophobic clusters in LIII-IV. Substitution of F1489 by a series of amino acids disrupted inactivation to different extents. The degree of disruption was closely correlated with the hydrophilicity of the amino acid at position 1489. These mutations dramatically destabilized the inactivated state and also significantly slowed the entry into the inactivated state, consistent with the idea that F1489 forms a hydrophobic interaction with a putative receptor during the fast inactivation process. Substitution of a phe residue at position 1488 or 1490 in mutants lacking F1489 did not restore normal inactivation, indicating that precise location of F1489 is critical for its function. Mutations of T1491 disrupted inactivation substantially, with large effects on the stability of the inactivated state and smaller effects on the rate of entry into the inactivated state. Mutations of several other hydrophobic residues did not destabilize the inactivated state at depolarized potentials, indicating that the effects of mutations at F1489 and T1491 are specific. The double mutant YY1497/8QQ slowed macroscopic inactivation at all potentials and accelerated recovery from inactivation at negative membrane potentials. Some of these mutations in LIII-IV also affected the latency to first opening, indicating coupling between LIII-IV and channel activation. Our results show that the amino acid residues of the IFM hydrophobic cluster and the adjacent T1491 are unique in contributing to the stability of the inactivated state, consistent with the designation of these residues as components of the inactivation particle responsible for fast inactivation of Na+ channels.
PMCID: PMC2217064  PMID: 9154906
mutagenesis; Xenopus oocyte; ion channel; rat

Results 1-23 (23)