Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  An immunological approach to detect phosphate stress in populations and single cells of photosynthetic picoplankton. 
In the marine cyanobacterium Synechococcus sp. strain WH7803, PstS is a 32-kDa cell wall-associated phosphate-binding protein specifically synthesized under conditions of restricted inorganic phosphate (P1) availability (D. J. Scanlan, N. H. Mann, and N. G. Carr, Mol. Microbiol. 10:181-191, 1993). We have assessed its use as a potential diagnostic marker for the P status of photosynthetic picoplankton. Expression of PstS in Synechococcus sp. strain WH7803 was observed when the P1 concentration fell below 50 nM, demonstrating that the protein is induced at concentrations of P1 typical of oligotrophic conditions. PstS expression could be specifically detected by use of standard Western blotting (immunoblotting) techniques in natural mesocosm samples under conditions in which the N/P ratio was artificially manipulated to force P depletion. In addition, we have developed an immunofluorescence assay that can detect PstS expression in single Synechococcus cells both in laboratory cultures and natural samples. We show that antibodies raised against PstS cross-react with P-depleted Prochlorococcus cells, extending the use of these antibodies to both major groups of prokaryotic photosynthetic picoplankton. Furthermore, DNA sequencing of a Prochlorococcus pstS homolog demonstrated high amino acid sequence identity (77%) with the marine Synechococcus sp. strain WH7803 protein, including those residues in Escherichia coli PstS known to be directly involved in phosphate binding.
PMCID: PMC168535  PMID: 9172363
2.  Ecological Genomics of Marine Picocyanobacteria†  
Summary: Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45°N to 40°S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level.
PMCID: PMC2698417  PMID: 19487728
3.  A Suppression Subtractive Hybridization Approach Reveals Niche-Specific Genes That May Be Involved in Predator Avoidance in Marine Synechococcus Isolates 
Picocyanobacteria of the genus Synechococcus are important contributors to marine primary production and are ubiquitous in the world's oceans. This genus is genetically diverse, and at least 10 discrete lineages or clades have been identified phylogenetically. However, little if anything is known about the genetic attributes which characterize particular lineages or are unique to specific strains. Here, we used a suppression subtractive hybridization (SSH) approach to identify strain- and clade-specific genes in two well-characterized laboratory strains, Synechococcus sp. strain WH8103 (clade III) and Synechococcus sp. strain WH7803 (clade V). Among the genes that were identified as potentially unique to each strain were genes encoding proteins that may be involved in specific predator avoidance, including a glycosyltransferase in strain WH8103 and a permease component of an ABC-type polysaccharide/polyol phosphate export system in WH7803. During this work the genome of one of these strains, WH7803, became available. This allowed assessment of the number of false-positive sequences (i.e., sequences present in the tester genome) present among the SSH-enriched sequences. We found that approximately 9% of the WH8103 sequences were potential false-positive sequences, which demonstrated that caution should be used when this technology is used to assess genomic differences in genetically similar bacterial strains.
PMCID: PMC1449036  PMID: 16597977
4.  Characterization of a zwf mutant of Synechococcus sp. strain PCC 7942. 
Journal of Bacteriology  1995;177(9):2550-2553.
A mutant of the cyanobacterium Synechococcus sp. strain PCC 7942 carrying a disrupted gene encoding glucose-6-phosphate dehydrogenase (zwf) produced no detectable glucose-6-phosphate dehydrogenase as assessed by enzyme assay and Western blot (immunoblot) analysis. This mutant exhibited significantly impaired dark viability.
PMCID: PMC176916  PMID: 7730289

Results 1-4 (4)