PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-1 (1)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  A Point Mutation in the Hair Cell Nicotinic Cholinergic Receptor Prolongs Cochlear Inhibition and Enhances Noise Protection 
PLoS Biology  2009;7(1):e1000018.
The transduction of sound in the auditory periphery, the cochlea, is inhibited by efferent cholinergic neurons projecting from the brainstem and synapsing directly on mechanosensory hair cells. One fundamental question in auditory neuroscience is what role(s) this feedback plays in our ability to hear. In the present study, we have engineered a genetically modified mouse model in which the magnitude and duration of efferent cholinergic effects are increased, and we assess the consequences of this manipulation on cochlear function. We generated the Chrna9L9′T line of knockin mice with a threonine for leucine change (L9′T) at position 9′ of the second transmembrane domain of the α9 nicotinic cholinergic subunit, rendering α9-containing receptors that were hypersensitive to acetylcholine and had slower desensitization kinetics. The Chrna9L9′T allele produced a 3-fold prolongation of efferent synaptic currents in vitro. In vivo, Chrna9L9′T mice had baseline elevation of cochlear thresholds and efferent-mediated inhibition of cochlear responses was dramatically enhanced and lengthened: both effects were reversed by strychnine blockade of the α9α10 hair cell nicotinic receptor. Importantly, relative to their wild-type littermates, Chrna9L9′T/L9′T mice showed less permanent hearing loss following exposure to intense noise. Thus, a point mutation designed to alter α9α10 receptor gating has provided an animal model in which not only is efferent inhibition more powerful, but also one in which sound-induced hearing loss can be restrained, indicating the ability of efferent feedback to ameliorate sound trauma.
Author Summary
Nicotinic cholinergic receptors are essential to higher order brain function. Structurally, these operate through a myriad of ligand-gated pentameric arrangements of different homologous subunits. Here, we report progress in understanding the structural properties of a neuronal nicotinic receptor at the synapse. Receptors assembled from two nicotinic cholinergic subunits (α9 and α10) serve exclusively at the synapse between central nervous system descending fibers and cochlear hair cells. This enabled us to show direct causality between a point mutation of the α9 subunit, and predicted alterations in the synaptic strength in sensory hair cells of the cochlea of α9 point mutant mice. Furthermore, this single mutation results in profound enhancement of central nervous system feedback to the cochlea. And finally, as a consequence, mutant mice possessing this altered receptor have substantially improved resistance to traumatic sound. Thus, central neuronal feedback on cochlear hair cells provides an opportunity to define one specific role that nicotinic receptors can play in the nervous system, enabling study from biophysical to behavioral levels and promoting a target for the prevention of noise-induced hearing loss.
A point mutation in the cochlear hair cell nicotinic cholinergic receptor leads to strengthened central nervous system feedback to the cochlea and enhances protection from noise-induced hearing loss.
doi:10.1371/journal.pbio.1000018
PMCID: PMC2628405  PMID: 19166271

Results 1-1 (1)