PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Association of STAT4 Polymorphism with Severe Renal Insufficiency in Lupus Nephritis 
PLoS ONE  2013;8(12):e84450.
Lupus nephritis is a cause of significant morbidity in systemic lupus erythematosus (SLE) and its genetic background has not been completely clarified. The aim of this investigation was to analyze single nucleotide polymorphisms (SNPs) for association with lupus nephritis, its severe form proliferative nephritis and renal outcome, in two Swedish cohorts. Cohort I (n = 567 SLE cases, n =  512 controls) was previously genotyped for 5676 SNPs and cohort II (n = 145 SLE cases, n = 619 controls) was genotyped for SNPs in STAT4, IRF5, TNIP1 and BLK.
Case-control and case-only association analyses for patients with lupus nephritis, proliferative nephritis and severe renal insufficiency were performed. In the case-control analysis of cohort I, four highly linked SNPs in STAT4 were associated with lupus nephritis with genome wide significance with p = 3.7×10−9, OR 2.20 for the best SNP rs11889341. Strong signals of association between IRF5 and an HLA-DR3 SNP marker were also detected in the lupus nephritis case versus healthy control analysis (p <0.0001). An additional six genes showed an association with lupus nephritis with p <0.001 (PMS2, TNIP1, CARD11, ITGAM, BLK and IRAK1). In the case-only meta-analysis of the two cohorts, the STAT4 SNP rs7582694 was associated with severe renal insufficiency with p  = 1.6×10−3 and OR 2.22. We conclude that genetic variations in STAT4 predispose to lupus nephritis and a worse outcome with severe renal insufficiency.
doi:10.1371/journal.pone.0084450
PMCID: PMC3873995  PMID: 24386384
2.  Genes identified in Asian SLE GWASs are also associated with SLE in Caucasian populations 
Recent genome-wide association studies (GWASs) conducted in Asian populations have identified novel risk loci for systemic lupus erythematosus (SLE). Here, we genotyped 10 single-nucleotide polymorphisms (SNPs) in eight such loci and investigated their disease associations in three independent Caucasian SLE case–control cohorts recruited from Sweden, Finland and the United States. The disease associations of the SNPs in ETS1, IKZF1, LRRC18-WDFY4, RASGRP3, SLC15A4, TNIP1 and 16p11.2 were replicated, whereas no solid evidence of association was observed for the 7q11.23 locus in the Caucasian cohorts. SLC15A4 was significantly associated with renal involvement in SLE. The association of TNIP1 was more pronounced in SLE patients with renal and immunological disorder, which is corroborated by two previous studies in Asian cohorts. The effects of all the associated SNPs, either conferring risk for or being protective against SLE, were in the same direction in Caucasians and Asians. The magnitudes of the allelic effects for most of the SNPs were also comparable across different ethnic groups. On the contrary, remarkable differences in allele frequencies between Caucasian and Asian populations were observed for all associated SNPs. In conclusion, most of the novel SLE risk loci identified by GWASs in Asian populations were also associated with SLE in Caucasian populations. We observed both similarities and differences with respect to the effect sizes and risk allele frequencies across ethnicities.
doi:10.1038/ejhg.2012.277
PMCID: PMC3746253  PMID: 23249952
systemic lupus erythematosus; genetic-association study; Asian; Caucasian
3.  A candidate gene study of the type I interferon pathway implicates IKBKE and IL8 as risk loci for SLE 
Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease in which the type I interferon pathway has a crucial role. We have previously shown that three genes in this pathway, IRF5, TYK2 and STAT4, are strongly associated with risk for SLE. Here, we investigated 78 genes involved in the type I interferon pathway to identify additional SLE susceptibility loci. First, we genotyped 896 single-nucleotide polymorphisms in these 78 genes and 14 other candidate genes in 482 Swedish SLE patients and 536 controls. Genes with P<0.01 in the initial screen were then followed up in 344 additional Swedish patients and 1299 controls. SNPs in the IKBKE, TANK, STAT1, IL8 and TRAF6 genes gave nominal signals of association with SLE in this extended Swedish cohort. To replicate these findings we extracted data from a genomewide association study on SLE performed in a US cohort. Combined analysis of the Swedish and US data, comprising a total of 2136 cases and 9694 controls, implicates IKBKE and IL8 as SLE susceptibility loci (Pmeta=0.00010 and Pmeta=0.00040, respectively). STAT1 was also associated with SLE in this cohort (Pmeta=3.3 × 10−5), but this association signal appears to be dependent of that previously reported for the neighbouring STAT4 gene. Our study suggests additional genes from the type I interferon system in SLE, and highlights genes in this pathway for further functional analysis.
doi:10.1038/ejhg.2010.197
PMCID: PMC3060320  PMID: 21179067
systemic lupus erythematosus; type I interferon system; candidate gene study; single nucleotide polymorphism; IKBKE; IL8
4.  Association between Common Variation at the FTO Locus and Changes in Body Mass Index from Infancy to Late Childhood: The Complex Nature of Genetic Association through Growth and Development 
PLoS Genetics  2011;7(2):e1001307.
An age-dependent association between variation at the FTO locus and BMI in children has been suggested. We meta-analyzed associations between the FTO locus (rs9939609) and BMI in samples, aged from early infancy to 13 years, from 8 cohorts of European ancestry. We found a positive association between additional minor (A) alleles and BMI from 5.5 years onwards, but an inverse association below age 2.5 years. Modelling median BMI curves for each genotype using the LMS method, we found that carriers of minor alleles showed lower BMI in infancy, earlier adiposity rebound (AR), and higher BMI later in childhood. Differences by allele were consistent with two independent processes: earlier AR equivalent to accelerating developmental age by 2.37% (95% CI 1.87, 2.87, p = 10−20) per A allele and a positive age by genotype interaction such that BMI increased faster with age (p = 10−23). We also fitted a linear mixed effects model to relate genotype to the BMI curve inflection points adiposity peak (AP) in infancy and AR. Carriage of two minor alleles at rs9939609 was associated with lower BMI at AP (−0.40% (95% CI: −0.74, −0.06), p = 0.02), higher BMI at AR (0.93% (95% CI: 0.22, 1.64), p = 0.01), and earlier AR (−4.72% (−5.81, −3.63), p = 10−17), supporting cross-sectional results. Overall, we confirm the expected association between variation at rs9939609 and BMI in childhood, but only after an inverse association between the same variant and BMI in infancy. Patterns are consistent with a shift on the developmental scale, which is reflected in association with the timing of AR rather than just a global increase in BMI. Results provide important information about longitudinal gene effects and about the role of FTO in adiposity. The associated shifts in developmental timing have clinical importance with respect to known relationships between AR and both later-life BMI and metabolic disease risk.
Author Summary
Variation at the FTO locus is reliably associated with BMI and adiposity-related traits, but little is still known about the effects of variation at this gene, particularly in children. We have examined a large collection of samples for which both genotypes at rs9939609 and multiple measurements of BMI are available. We observe a positive association between the minor allele (A) at rs9939609 and BMI emerging in childhood that has the characteristics of a shift in the age scale leading simultaneously to lower BMI during infancy and higher BMI in childhood. Assessed in cross section and longitudinally, we find evidence of variation at rs9939609 being associated with the timing of AR and the concert of events expected with such a change to the BMI curve. Importantly, the apparently negative association between the minor allele (A) and BMI in early life, which is then followed by an earlier AR and greater BMI in childhood, is a pattern known to be associated with both the risk of adult BMI and metabolic disorders such as type 2 diabetes (T2D). These findings are important in our understanding of the contribution of FTO to adiposity, but also in light of efforts to appreciate genetic effects in a lifecourse context.
doi:10.1371/journal.pgen.1001307
PMCID: PMC3040655  PMID: 21379325
5.  A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus 
Nature genetics  2009;41(11):1228-1233.
Genome-wide association studies have recently identified at least 15 susceptibility loci for systemic lupus erythematosus (SLE). To confirm additional risk loci, we selected SNPs from 2,466 regions that showed nominal evidence of association to SLE (P < 0.05) in a genome-wide study and genotyped them in an independent sample of 1,963 cases and 4,329 controls. This replication effort identified five new SLE susceptibility loci (P < 5 × 10−8): TNIP1 (odds ratio (OR) = 1.27), PRDM1 (OR = 1.20), JAZF1 (OR = 1.20), UHRF1BP1 (OR = 1.17) and IL10 (OR = 1.19). We identified 21 additional candidate loci with P ≤ 1 × 10−5. A candidate screen of alleles previously associated with other autoimmune diseases suggested five loci (P < 1 × 10−3) that may contribute to SLE: IFIH1, CFB, CLEC16A, IL12B and SH2B3. These results expand the number of confirmed and candidate SLE susceptibility loci and implicate several key immunologic pathways in SLE pathogenesis.
doi:10.1038/ng.468
PMCID: PMC2925843  PMID: 19838195
6.  Meta-analysis in more than 17,900 cases of ischemic stroke reveals a novel association at 12q24.12 
Neurology  2014;83(8):678-685.
Objectives:
To perform a genome-wide association study (GWAS) using the Immunochip array in 3,420 cases of ischemic stroke and 6,821 controls, followed by a meta-analysis with data from more than 14,000 additional ischemic stroke cases.
Methods:
Using the Immunochip, we genotyped 3,420 ischemic stroke cases and 6,821 controls. After imputation we meta-analyzed the results with imputed GWAS data from 3,548 cases and 5,972 controls recruited from the ischemic stroke WTCCC2 study, and with summary statistics from a further 8,480 cases and 56,032 controls in the METASTROKE consortium. A final in silico “look-up” of 2 single nucleotide polymorphisms in 2,522 cases and 1,899 controls was performed. Associations were also examined in 1,088 cases with intracerebral hemorrhage and 1,102 controls.
Results:
In an overall analysis of 17,970 cases of ischemic stroke and 70,764 controls, we identified a novel association on chromosome 12q24 (rs10744777, odds ratio [OR] 1.10 [1.07–1.13], p = 7.12 × 10−11) with ischemic stroke. The association was with all ischemic stroke rather than an individual stroke subtype, with similar effect sizes seen in different stroke subtypes. There was no association with intracerebral hemorrhage (OR 1.03 [0.90–1.17], p = 0.695).
Conclusion:
Our results show, for the first time, a genetic risk locus associated with ischemic stroke as a whole, rather than in a subtype-specific manner. This finding was not associated with intracerebral hemorrhage.
doi:10.1212/WNL.0000000000000707
PMCID: PMC4150131  PMID: 25031287

Results 1-6 (6)