PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  A proprotein convertase/MMP-14 proteolytic cascade releases a novel 40 kDa vasculostatin from tumor suppressor BAI1 
Oncogene  2012;31(50):5144-5152.
Brain angiogenesis inhibitor 1 (BAI1), an orphan GPCR-type seven transmembrane receptor, was recently found mutated or silenced in multiple human cancers and can interfere with tumor growth when overexpressed. Yet, little is known about the molecular mechanisms through which this novel tumor suppressor exerts its anti-cancer effects. Here, we demonstrate that the N-terminus of BAI1 is cleaved extracellularly to generate a truncated receptor and a 40 kDa fragment that inhibits angiogenesis. We demonstrate that this novel proteolytic processing event depends on a two-step cascade of protease of activation: proprotein convertases, primarily furin, activate latent matrix metalloproteinase 14, which then directly cleaves BAI1 to release the bioactive fragment. These findings significantly augment our knowledge of BAI1 by showing a novel posttranslational mechanism regulating BAI1 activity through cancer-associated proteases, have important implications for BAI1 function and regulation, and present novel opportunities for therapy of cancer and other vascular diseases.
doi:10.1038/onc.2012.1
PMCID: PMC3355202  PMID: 22330140
2.  Vasculostatin inhibits intracranial glioma growth and negatively regulates in vivo angiogenesis through a CD36-dependent mechanism 
Cancer research  2009;69(3):1212-1220.
Angiogenesis is a critical physiological process that is appropriated during tumorigenesis. Little is known about how this process is specifically regulated in the brain. Brain Angiogenesis Inhibitor-1 (BAI1) is a primarily brain specific seven-transmembrane protein that contains five anti-angiogenic thrombospondin type-1 repeats (TSR). We recently showed that BAI1 is cleaved at a conserved proteolytic cleavage site releasing a soluble, 120 kDa anti-angiogenic factor called Vasculostatin (Vstat120). Vstat120 has been shown to inhibit in vitro angiogenesis and suppress subcutaneous tumor growth. Here, we examine its effect on intracranial growth of malignant gliomas and further study the mechanism of its anti-tumor effects. First, we show that expression of Vstat120 strongly suppresses the intracranial growth of malignant gliomas, even in the presence of the strong pro-angiogenic stimulus mediated by the oncoprotein Epidermal Growth Factor Receptor variant III (EGFRvIII). This tumor suppressive effect is accompanied by a decrease in vascular density in the tumors, suggesting a potent anti-angiogenic effect in the brain. Second, and consistent with this interpretation, we find that treatment with Vstat120 reduces the migration of cultured microvascular endothelial cells in vitro and inhibits corneal angiogenesis in vivo. Third, we demonstrate that these anti-vascular effects are critically dependent on the presence of the cell surface receptor CD36 on endothelial cells in vitro and in vivo, supporting a role of the Vstat120 TSRs in mediating these effects. These results advance the understanding of brain-specific angiogenic regulation, and suggest that Vstat120 has therapeutic potential in the treatment of brain tumors and other intra-cerebral vasculopathies.
doi:10.1158/0008-5472.CAN-08-1166
PMCID: PMC2659670  PMID: 19176395
Brain Angiogenesis Inhibitor 1 (BAI1); Vasculostatin; brain tumor; glioma
3.  Targeted Cancer Gene Therapy Using a Hypoxia Inducible Factor–Dependent Oncolytic Adenovirus Armed with Interleukin-4 
Cancer research  2007;67(14):6872-6881.
There is a need for novel therapies targeting hypoxic cells in tumors. These cells are associated with tumor resistance to therapy and express hypoxia inducible factor-1 (HIF-1), a transcription factor that mediates metabolic adaptation to hypoxia and activates tumor angiogenesis. We previously developed an oncolytic adenovirus (HYPR-Ad) for the specific killing of hypoxic/HIF-active tumor cells, which we now armed with an interleukin-4 gene (HYPR-Ad-IL4). We designed HYPR-Ad-IL4 by cloning the Ad E1A viral replication and IL-4 genes under the regulation of a bidirectional hypoxia/HIF-responsive promoter. The IL-4 cytokine was chosen for its ability to induce a strong host antitumor immune response and its potential antiangiogenic activity. HYPR-Ad-IL4 induced hypoxia-dependent IL-4 expression, viral replication, and conditional cytolysis of hypoxic, but not normoxic cells. The treatment of established human tumor xenografts with HYPR-Ad-IL4 resulted in rapid and maintained tumor regression with the same potency as that of wild-type dl309-Ad. HYPR-Ad-IL4–treated tumors displayed extensive necrosis, fibrosis, and widespread viral replication. Additionally, these tumors contained a distinctive leukocyte infiltrate and prominent hypoxia. The use of an oncolytic Ad that locally delivers IL-4 to tumors is novel, and we expect that HYPR-Ad-IL4 will have broad therapeutic use for all solid tumors that have hypoxia or active HIF, regardless of tissue origin or genetic alterations.
doi:10.1158/0008-5472.CAN-06-3244
PMCID: PMC2262867  PMID: 17638898

Results 1-3 (3)