PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Persistent Release of IL-1s from Skin Is Associated with Systemic Cardio-Vascular Disease, Emaciation and Systemic Amyloidosis: The Potential of Anti-IL-1 Therapy for Systemic Inflammatory Diseases 
PLoS ONE  2014;9(8):e104479.
The skin is an immune organ that contains innate and acquired immune systems and thus is able to respond to exogenous stimuli producing large amount of proinflammatory cytokines including IL-1 and IL-1 family members. The role of the epidermal IL-1 is not limited to initiation of local inflammatory responses, but also to induction of systemic inflammation. However, association of persistent release of IL-1 family members from severe skin inflammatory diseases such as psoriasis, epidermolysis bullosa, atopic dermatitis, blistering diseases and desmoglein-1 deficiency syndrome with diseases in systemic organs have not been so far assessed. Here, we showed the occurrence of severe systemic cardiovascular diseases and metabolic abnormalities including aberrant vascular wall remodeling with aortic stenosis, cardiomegaly, impaired limb and tail circulation, fatty tissue loss and systemic amyloid deposition in multiple organs with liver and kidney dysfunction in mouse models with severe dermatitis caused by persistent release of IL-1s from the skin. These morbid conditions were ameliorated by simultaneous administration of anti-IL-1α and IL-1β antibodies. These findings may explain the morbid association of arteriosclerosis, heart involvement, amyloidosis and cachexia in severe systemic skin diseases and systemic autoinflammatory diseases, and support the value of anti-IL-1 therapy for systemic inflammatory diseases.
doi:10.1371/journal.pone.0104479
PMCID: PMC4131904  PMID: 25119884
2.  Motor dysfunction in cerebellar Purkinje cell-specific vesicular GABA transporter knockout mice 
γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the adult mammalian central nervous system and plays modulatory roles in neural development. The vesicular GABA transporter (VGAT) is an essential molecule for GABAergic neurotransmission due to its role in vesicular GABA release. Cerebellar Purkinje cells (PCs) are GABAergic projection neurons that are indispensable for cerebellar function. To elucidate the significance of VGAT in cerebellar PCs, we generated and characterized PC-specific VGAT knockout (L7-VGAT) mice. VGAT mRNAs and proteins were specifically absent in the 40-week-old L7-VGAT PCs. The morphological characteristics, such as lamination and foliation of the cerebellar cortex, of the L7-VGAT mice were similar to those of the control littermate mice. Moreover, the protein expression levels and patterns of pre- (calbindin and parvalbumin) and postsynaptic (GABA-A receptor α1 subunit and gephyrin) molecules between the L7-VGAT and control mice were similar in the deep cerebellar nuclei that receive PC projections. However, the L7-VGAT mice performed poorly in the accelerating rotarod test and displayed ataxic gait in the footprint test. The L7-VGAT mice also exhibited severer ataxia as VGAT deficits progressed. These results suggest that VGAT in cerebellar PCs is not essential for the rough maintenance of cerebellar structure, but does play an important role in motor coordination. The L7-VGAT mice are a novel model of ataxia without PC degeneration, and would also be useful for studying the role of PCs in cognition and emotion.
doi:10.3389/fncel.2013.00286
PMCID: PMC3893617  PMID: 24474904
cerebellum; Purkinje cells; VGAT; knockout mice; ataxia; mouse model
3.  Reduced bone morphogenetic protein receptor type 1A signaling in neural-crest-derived cells causes facial dysmorphism 
Disease Models & Mechanisms  2012;5(6):948-955.
SUMMARY
Bone morphogenetic protein (BMP) receptor type 1A (BMPR1A) mutations are associated with facial dysmorphism, which is one of the main clinical signs in both juvenile polyposis and chromosome 10q23 deletion syndromes. Craniofacial development requires reciprocal epithelial/neural crest (NC)-derived mesenchymal interactions mediated by signaling factors, such as BMP, in both cell populations. To address the role of mesenchymal BMP signaling in craniofacial development, we generated a conditional knockdown mouse by expressing the dominant-negative Bmpr1a in NC-derived cells expressing the myelin protein zero(Mpz)-Cre transgene. At birth, 100% of the conditional mutant mice had wide-open anterior fontanelles, and 80% of them died because of cleft face and cleft palate soon after birth. The other 20% survived and developed short faces, hypertelorism and calvarial foramina. Analysis of the NC-derived craniofacial mesenchyme of mutant embryos revealed an activation of the P53 apoptosis pathway, downregulation of both c-Myc and Bcl-XL, a normal growth rate but an incomplete expansion of mesenchymal cells. These findings provide genetic evidence indicating that optimal Bmpr1a-mediated signaling is essential for NC-derived mesenchymal cell survival in both normal nasal and frontal bone development and suggest that our model is useful for studying some aspects of the molecular etiology of human craniofacial dysmorphism.
doi:10.1242/dmm.009274
PMCID: PMC3484876  PMID: 22773757
4.  Functional Roles of Otx2 Transcription Factor in Postnatal Mouse Retinal Development▿ † 
Molecular and Cellular Biology  2007;27(23):8318-8329.
We previously reported that Otx2 is essential for photoreceptor cell fate determination; however, the functional role of Otx2 in postnatal retinal development is still unclear although it has been reported to be expressed in retinal bipolar cells and photoreceptors at postnatal stages. In this study, we first examined the roles of Otx2 in the terminal differentiation of photoreceptors by analyzing Otx2; Crx double-knockout mice. In Otx2+/−; Crx−/− retinas, photoreceptor degeneration and downregulation of photoreceptor-specific genes were much more prominent than in Crx−/− retinas, suggesting that Otx2 has a role in the terminal differentiation of the photoreceptors. Moreover, bipolar cells decreased in the Otx2+/−; Crx−/− retina, suggesting that Otx2 is also involved in retinal bipolar-cell development. To further investigate the role of Otx2 in bipolar-cell development, we generated a postnatal bipolar-cell-specific Otx2 conditional-knockout mouse line. Immunohistochemical analysis of this line showed that the expression of protein kinase C, a marker of mature bipolar cells, was significantly downregulated in the retina. Electroretinograms revealed that the electrophysiological function of retinal bipolar cells was impaired as a result of Otx2 ablation. These data suggest that Otx2 plays a functional role in the maturation of retinal photoreceptor and bipolar cells.
doi:10.1128/MCB.01209-07
PMCID: PMC2169187  PMID: 17908793
5.  Congenital Semilunar Valvulogenesis Defect in Mice Deficient in Phospholipase Cɛ†  
Molecular and Cellular Biology  2005;25(6):2191-2199.
Phospholipase Cɛ is a novel class of phosphoinositide-specific phospholipase C, identified as a downstream effector of Ras and Rap small GTPases. We report here the first genetic analysis of its physiological function with mice whose phospholipase Cɛ is catalytically inactivated by gene targeting. The hearts of mice homozygous for the targeted allele develop congenital malformations of both the aortic and pulmonary valves, which cause a moderate to severe degree of regurgitation with mild stenosis and result in ventricular dilation. The malformation involves marked thickening of the valve leaflets, which seems to be caused by a defect in valve remodeling at the late stages of semilunar valvulogenesis. This phenotype has a remarkable resemblance to that of mice carrying an attenuated epidermal growth factor receptor or deficient in heparin-binding epidermal growth factor-like growth factor. Smad1/5/8, which is implicated in proliferation of the valve cells downstream of bone morphogenetic protein, shows aberrant activation at the margin of the developing semilunar valve tissues in embryos deficient in phospholipase Cɛ. These results suggest a crucial role of phospholipase Cɛ downstream of the epidermal growth factor receptor in controlling semilunar valvulogenesis through inhibition of bone morphogenetic protein signaling.
doi:10.1128/MCB.25.6.2191-2199.2005
PMCID: PMC1061609  PMID: 15743817

Results 1-5 (5)