PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (83)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  REACTIVE OXYGEN SPECIES AND COLORECTAL CANCER 
Several agents used for treatment of colon and other cancers induce reactive oxygen species (ROS) and this plays an important role in their anticancer activities. In addition to the well-known proapoptotic effects of ROS inducers, these compounds also decrease expression of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and several pro-oncogenic Spregulated genes important for cancer cell proliferation, survival and metastasis. The mechanism of these responses involve ROS-dependent downregulation of microRNA-27a (miR-27a) or miR-20a (and paralogs) and induction of two Sp-repressors, ZBTB10 and ZBTB4 respectively. This pathway significantly contributes to the anticancer activity of ROS inducers and should be considered in development of drug combinations for cancer chemotherapy.
doi:10.1007/s11888-013-0190-5
PMCID: PMC4288935  PMID: 25584043
Colon cancer; reactive oxygen Species; antioxidants; specificity transcription factors; targeted therapy; mechanism based drugs; zinc finger DNA binding proteins; microRNA
2.  THE CANNABINOID WIN 55,212-2 DECREASES SPECIFICITY PROTEIN (Sp) TRANSCRIPTION FACTORS AND THE ONCOGENIC CAP PROTEIN eIF4E IN COLON CANCER CELLS 
Molecular cancer therapeutics  2013;12(11):2483-2493.
2,3-Dihydro-5-methyl-3-([morpholinyl]methyl)pyrollo(1,2,3-de)-1,4-benzoxazinyl]-[1-naphthaleny]methanone [WIN 55,212-2 (WIN)] is a synthetic cannabinoid that inhibits RKO, HT-29 and SW480 cell growth, induced apoptosis, and downregulated expression of survivin, cyclin D1, epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) and its receptor (VEGFR1). WIN also decreased expression of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4, and this is consistent with the observed downregulation of the aforementioned Sp-regulated genes. In addition, we also observed by RNA interference (RNAi) that the oncogenic cap protein eIF4E was an Sp-regulated gene also downregulated by WIN in colon cancer cells. WIN-mediated repression of Sp proteins was not affected by CB receptor antagonists or by knockdown of the receptor but was attenuated by the phosphatase inhibitor sodium orthovanadate or by knockdown of protein phosphatase 2A (PP2A). WIN-mediated repression of Sp1, Sp3 and Sp4 was due to PP2A-dependent downregulation of microRNA-27a (miR-27a) and induction of miR-27a-regulated ZBTB10 which has previously been characterized as an “Sp repressor”. The results demonstrate that the anticancer activity of WIN is due, in part, to PP2A-dependent disruption of miR-27a:ZBTB10 and ZBTB10-mediated repression of Sp transcription factors and Sp-regulated genes including eIF4E.
doi:10.1158/1535-7163.MCT-13-0486
PMCID: PMC4288937  PMID: 24030632
Cannabinoids; WIN 55,212-2; downregulation; Sp; eIF4E
3.  Mechanism of Action of Phenethylisothiocyanate and Other Reactive Oxygen Species-Inducing Anticancer Agents 
Molecular and Cellular Biology  2014;34(13):2382-2395.
Reactive oxygen species (ROS)-inducing anticancer agents such as phenethylisothiocyanate (PEITC) activate stress pathways for killing cancer cells. Here we demonstrate that PEITC-induced ROS decreased expression of microRNA 27a (miR-27a)/miR-20a:miR-17-5p and induced miR-regulated ZBTB10/ZBTB4 and ZBTB34 transcriptional repressors, which, in turn, downregulate specificity protein (Sp) transcription factors (TFs) Sp1, Sp3, and Sp4 in pancreatic cancer cells. Decreased expression of miR-27a/miR-20a:miR-17-5p by PEITC-induced ROS is a key step in triggering the miR-ZBTB Sp cascade leading to downregulation of Sp TFs, and this is due to ROS-dependent epigenetic effects associated with genome-wide shifts in repressor complexes, resulting in decreased expression of Myc and the Myc-regulated miRs. Knockdown of Sp1 alone by RNA interference also induced apoptosis and decreased pancreatic cancer cell growth and invasion, indicating that downregulation of Sp transcription factors is an important common mechanism of action for PEITC and other ROS-inducing anticancer agents.
doi:10.1128/MCB.01602-13
PMCID: PMC4054319  PMID: 24732804
4.  The Transcriptional Repressor ZBTB4 Regulates EZH2 Through a MicroRNA-ZBTB4-Specificity Protein Signaling Axis12 
Neoplasia (New York, N.Y.)  2014;16(12):1059-1069.
ZBTB4 is a transcriptional repressor and examination of publically-available microarray data sets demonstrated an inverse relationship in the prognostic value and expression of ZBTB4 and the histone methyltransferase EZH2 in tumors from breast cancer patients. The possibility of functional interactions between EZH2 and ZBTB4 was investigated in breast cancer cells and the results showed that EZH2 is directly suppressed by ZBTB4 which in turn is regulated (suppressed) by miR-106b and other paralogues from the miR-17-92, miR-106b-25 and miR-106a-363 clusters that are highly expressed in breast and other tumors. ZBTB4 also acts a suppressor of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4, and RNA interference studies show that Sp proteins are required for EZH2 expression. The prediction analysis results from breast cancer patient array data sets confirm an association of Sp1-dependent EZH2 gene signature with decreased survival of breast cancer patients. Disruption of oncogenic miR-ZBTB4 signaling axis by anticancer agent such as betulinic acid that induce down-regulation of Sp proteins in breast cancer cells resulted in inhibition of tumor growth and colonization of breast cancer cells in a mouse model. Thus, EZH2 is reciprocally regulated by a novel signaling network consisting of Sp proteins, oncogenic miRs and ZBTB4, and modulation of this gene network is a novel therapeutic approach for treatment of breast cancer and possibly other cancers.
doi:10.1016/j.neo.2014.09.011
PMCID: PMC4309261  PMID: 25499219
Sp, Specificity protein; ZBTB4, Zinc finger BTB domain protein 4; miR, microRNA; BA, Betulinic acid; EMSA, Electrophoretic mobility shift assay; Chip, Chromatin immunoprecipitation assay
5.  Metformin inhibits pancreatic cancer cell and tumor growth and downregulates Sp transcription factors 
Carcinogenesis  2013;34(12):2870-2879.
Metformin is a widely used antidiabetic drug, and epidemiology studies for pancreatic and other cancers indicate that metformin exhibits both chemopreventive and chemotherapeutic activities. Several metformin-induced responses and genes are similar to those observed after knockdown of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 by RNA interference, and we hypothesized that the mechanism of action of metformin in pancreatic cancer cells was due, in part, to downregulation of Sp transcription factors. Treatment of Panc1, L3.6pL and Panc28 pancreatic cancer cells with metformin downregulated Sp1, Sp3 and Sp4 proteins and several pro-oncogenic Sp-regulated genes including bcl-2, survivin, cyclin D1, vascular endothelial growth factor and its receptor, and fatty acid synthase. Metformin induced proteasome-dependent degradation of Sps in L3.6pL and Panc28 cells, whereas in Panc1 cells metformin decreased microRNA-27a and induced the Sp repressor, ZBTB10, and disruption of miR-27a:ZBTB10 by metformin was phosphatase dependent. Metformin also inhibited pancreatic tumor growth and downregulated Sp1, Sp3 and Sp4 in tumors in an orthotopic model where L3.6pL cells were injected directly into the pancreas. The results demonstrate for the first time that the anticancer activities of metformin are also due, in part, to downregulation of Sp transcription factors and Sp-regulated genes.
doi:10.1093/carcin/bgt231
PMCID: PMC3845888  PMID: 23803693
6.  1, 1-Bis (3′-indolyl)-1-(p-substituted phenyl) methane compounds inhibit lung cancer cell and tumor growth in a metastasis model 
1,1-Bis(3-indolyl)-1-(p-substitutedphenyl)methane (C-DIM) compounds exhibit remarkable antitumor activity with low toxicity in various cancer cells including lung tumors. Two C-DIM analogs, DIM-C-pPhOCH3 (C-DIM-5) and DIM-C-pPhOH (C-DIM-8) while acting differentially on the orphan nuclear receptor, TR3/Nur77 inhibited cell cycle progression from G0/G1 to S-phase and induced apoptosis in A549 cells. Combinations of docetaxel (doc) with C-DIM-5 or C-DIM-8 showed synergistic anticancer activity in vitro and these results were consistent with their enhanced antitumor activities in vivo. Respirable aqueous formulations of C-DIM-5 (mass median aerodynamic diameter of 1.92 ± 0.22 um and geometric standard deviation of 2.31 ± 0.12) and C-DIM-8 (mass median aerodynamic diameter of 1.84 ± 0.31 um and geometric standard deviation of 2.11 ± 0.15) were successfully delivered by inhalation to athymic nude mice bearing A549 cells as metastatic tumors. This resulted in significant (p<0.05) lung tumor regression and an overall reduction in tumor burden. Analysis of lung tumors from mice treated with inhalational formulations of C-DIM-5 and C-DIM-8 showed decreased mRNA and protein expression of mediators of tumor initiation, metastasis, and angiogenesis including MMP2, MMP9, c-Myc, β-catenin, c-Met, c-Myc, and EGFR. Microvessel density assessment of lung tissue sections showed significant reduction (p<0.05) in angiogenesis and metastasis as evidenced by decreased distribution of immunohistochemical staining of VEGF, and CD31. Our studies demonstrate both C-DIM-5 and C-DIM-8 have similar anticancer profiles in treating metastatic lung cancer and possibly work as TR3 inactivators.
doi:10.1016/j.ejps.2013.07.007
PMCID: PMC3838903  PMID: 23892137
Nur77/TR3; metastatic; nebulizer; angiogenesis; inhalation
7.  Role of the Aryl Hydrocarbon Receptor in Carcinogenesis and Potential as a Drug Target 
Toxicological Sciences  2013;135(1):1-16.
The aryl hydrocarbon receptor (AHR) is highly expressed in multiple organs and tissues, and there is increasing evidence that the AHR plays an important role in cellular homeostasis and disease. The AHR is expressed in multiple tumor types, in cancer cell lines, and in tumors from animal models, and the function of the AHR has been determined by RNA interference, overexpression, and inhibition studies. With few exceptions, knockdown of the AHR resulted in decreased proliferation and/or invasion and migration of cancer cell lines, and in vivo studies in mice overexpressing the constitutively active AHR exhibited enhanced stomach and liver cancers, suggesting a pro-oncogenic role for the AHR. In contrast, loss of the AHR in transgenic mice that spontaneously develop colonic tumors and in carcinogen-induced liver tumors resulted in increased carcinogenesis, suggesting that the receptor may exhibit antitumorigenic activity prior to tumor formation. AHR ligands also either enhanced or inhibited tumorigenesis, and these effects were highly tumor specific, demonstrating that selective AHR modulators that exhibit agonist or antagonist activities represent an important new class of anticancer agents that can be directed against multiple tumors.
doi:10.1093/toxsci/kft128
PMCID: PMC3748760  PMID: 23771949
Ah receptor; agonist activity; antagonist activity; drug target.
8.  Betulinic acid decreases ER-negative breast cancer cell growth in vitro and in vivo: role of Sp transcription factors and microRNA-27a:ZBTB10 
Molecular carcinogenesis  2012;52(8):591-602.
Betulinic acid (BA), a pentacyclic triterpenoid isolated from tree bark is cytotoxic to cancer cells. There is evidence that specificity proteins (Sps), such as Sp1, Sp3 and Sp4, are overexpressed in tumors and contribute to the proliferative and angiogenic phenotype associated with cancer cells. The objective of this study was to determine the efficacy of BA in decreasing the Sps expression and underlying mechanisms. Results show that BA decreased proliferation and induced apoptosis of estrogen-receptor-negative breast cancer MDA-MB-231 cells. The BA-induced Sp1, Sp3, and Sp4 downregulation was accompanied by increased zinc finger ZBTB10 expression, a putative Sp-repressor (ZBTB10) and decreased microRNA-27a levels, a microRNA involved in the regulation of ZBTB10. Similar results were observed in MDA-MB-231 cells transfected with ZBTB10 expression plasmid. BA induced cell cycle arrest in the G2/M phase and increased Myt-1 mRNA (a microRNA-27a target gene), which causes inhibition in G2/M by phosphorylation of cdc2. The effects of BA were reversed by transient transfection with a mimic of microRNA-27a. In nude mice with xenografted MDA-MB-231 cells, tumor size and weight were significantly decreased by BA treatment. In tumor tissue, ZBTB10 mRNA was increased while mRNA and protein of Sp1, Sp3 and Sp4, as well as mRNA of vascular endothelial growth factor receptor (VEGFR), survivin and microRNA-27a were decreased by BA. In lungs of xenografted mice, human β2-microglobulin mRNA was decreased in BA-treated animals. These results show that the anti-cancer effects of BA are at least in part based on interactions with the microRNA-27a-ZBTB10-Sp1-axis causing increased cell death.
doi:10.1002/mc.21893
PMCID: PMC3418350  PMID: 22407812
MDA-MB-231-breast cancer; ZBTB10; Sp-transcription factors
9.  The aryl hydrocarbon receptor ligand omeprazole inhibits breast cancer cell invasion and metastasis 
BMC Cancer  2014;14:498.
Background
Patients with ER-negative breast tumors are among the most difficult to treat and exhibit low survival rates due, in part, to metastasis from the breast to various distal sites. Aryl hydrocarbon receptor (AHR) ligands show promise as antimetastatic drugs for estrogen receptor (ER)-negative breast cancer.
Methods
Triple negative MDA-MB-231 breast cancer cells were treated with eight AHR-active pharmaceuticals including 4-hydroxtamoxifen, flutamide leflunomide, mexiletine, nimodipine, omeprazole, sulindac and tranilast, and the effects of these compounds on cell proliferation (MTT assay) and cell migration (Boyden chamber assay) were examined. The role of the AHR in mediating inhibition of MDA-MB-231 cell invasion was investigated by RNA interference (RNAi) and knockdown of AHR or cotreatment with AHR agonists. Lung metastasis of MDA-MB-231 cells was evaluated in mice administered cells by tail vein injection and prometastatic gene expression was examined by immunohistochemistry.
Results
We showed that only the proton pump inhibitor omeprazole decreased MDA-MB-231 breast cancer cell invasion in vitro. Omeprazole also significantly decreased MDA-MB-231 cancer cell metastasis to the lung in a mouse model (tail vein injection), and in vitro studies showed that omeprazole decreased expression of at least two prometastatic genes, namely matrix metalloproteinase-9 (MMP-9) and C-X-C chemokine receptor 4 (CXCR4). Results of RNA interference studies confirmed that omeprazole-mediated downregulation of CXCR4 (but not MMP-9) was AHR-dependent. Chromatin immunoprecipitation assays demonstrated that omeprazole recruited the AHR to regions in the CXCR4 promoter that contain dioxin response elements (DREs) and this was accompanied by the loss of pol II on the promoter and decreased expression of CXCR4.
Conclusions
AHR-active pharmaceuticals such as omeprazole that decrease breast cancer cell invasion and metastasis may have important clinical applications for late stage breast cancer chemotherapy.
doi:10.1186/1471-2407-14-498
PMCID: PMC4226953  PMID: 25011475
Omeprazole; Ah receptor; Metastasis; Inhibition; CXCR4
10.  Interferon Tau Alleviates Obesity-Induced Adipose Tissue Inflammation and Insulin Resistance by Regulating Macrophage Polarization 
PLoS ONE  2014;9(6):e98835.
Chronic adipose tissue inflammation is a hallmark of obesity-induced insulin resistance and anti-inflammatory agents can benefit patients with obesity-associated syndromes. Currently available type I interferons for therapeutic immunomodulation are accompanied by high cytotoxicity and therefore in this study we have examined anti-inflammatory effects of interferon tau (IFNT), a member of the type I interferon family with low cellular toxicity even at high doses. Using a diet-induced obesity mouse model, we observed enhanced insulin sensitivity in obese mice administered IFNT compared to control mice, which was accompanied by a significant decrease in secretion of proinflammatory cytokines and elevated anti-inflammatory macrophages (M2) in adipose tissue. Further investigations revealed that IFNT is a potent regulator of macrophage activation that favors anti-inflammatory responses as evidenced by activation of associated surface antigens, production of anti-inflammatory cytokines, and activation of selective cell signaling pathways. Thus, our study demonstrates, for the first time, that IFNT can significantly mitigate obesity-associated systemic insulin resistance and tissue inflammation by controlling macrophage polarization, and thus IFNT can be a novel bio-therapeutic agent for treating obesity-associated syndromes and type 2 diabetes.
doi:10.1371/journal.pone.0098835
PMCID: PMC4048269  PMID: 24905566
11.  Polybrominated Dibenzo-p-Dioxins, Dibenzofurans, and Biphenyls: Inclusion in the Toxicity Equivalency Factor Concept for Dioxin-Like Compounds 
Toxicological Sciences  2013;133(2):197-208.
In 2011, a joint World Health Organization (WHO) and United Nations Environment Programme (UNEP) expert consultation took place, during which the possible inclusion of brominated analogues of the dioxin-like compounds in the WHO Toxicity Equivalency Factor (TEF) scheme was evaluated. The expert panel concluded that polybrominated dibenzo-p-dioxins (PBDDs), dibenzofurans (PBDFs), and some dioxin-like biphenyls (dl-PBBs) may contribute significantly in daily human background exposure to the total dioxin toxic equivalencies (TEQs). These compounds are also commonly found in the aquatic environment. Available data for fish toxicity were evaluated for possible inclusion in the WHO-UNEP TEF scheme (van den Berg et al., 1998). Because of the limited database, it was decided not to derive specific WHO-UNEP TEFs for fish, but for ecotoxicological risk assessment, the use of specific relative effect potencies (REPs) from fish embryo assays is recommended. Based on the limited mammalian REP database for these brominated compounds, it was concluded that sufficient differentiation from the present TEF values of the chlorinated analogues (van den Berg et al., 2006) was not possible. However, the REPs for PBDDs, PBDFs, and non-ortho dl-PBBs in mammals closely follow those of the chlorinated analogues, at least within one order of magnitude. Therefore, the use of similar interim TEF values for brominated and chlorinated congeners for human risk assessment is recommended, pending more detailed information in the future.
doi:10.1093/toxsci/kft070
PMCID: PMC3663561  PMID: 23492812
dioxin; halogenated hydrocarbon; persistent organic chemicals; polychlorinated biphenyls; regulatory/policy; biomarkers.
12.  INHIBITION OF RHABDOMYOSARCOMA CELL AND TUMOR GROWTH BY TARGETING SPECIFICITY PROTEIN (Sp) TRANSCRIPTION FACTORS 
Specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 are highly expressed in rhabdomyosarcoma (RMS) cells. In tissue arrays of RMS tumor cores from 71 patients, 80% of RMS patients expressed high levels of Sp1 protein, whereas low expression of Sp1 was detected in normal muscle tissue. The non-steroidal anti-inflammatory drug (NSAID) tolfenamic acid (TA) inhibited growth and migration of RD and RH30 RMS cell lines and also inhibited tumor growth in vivo using a mouse xenograft (RH30 cells) model. The effects of TA were accompanied by downregulation of Sp1, Sp3, Sp4 and Sp-regulated genes in RMS cells and tumors, and the role of Sp protein downregulation in mediating inhibition of RD and RH30 cell growth and migration was confirmed by individual and combined knockdown of Sp1, Sp3 and Sp4 proteins by RNA interference. TA treatment and Sp knockdown in RD and RH30 cells also showed that four genes that are emerging as individual drug targets for treating RMS, namely c-MET, insulin-like growth factor receptor (IGFR), PDGFRα and CXCR4, are also Sp-regulated genes. These results suggest that NSAIDs such as TA may have potential clinical efficacy in drug combinations for treating RMS patients.
doi:10.1002/ijc.27730
PMCID: PMC3527649  PMID: 22815231
Tolfenamic acid; Sp proteins; downregulation; RMS cells
13.  Unifying Mechanisms of Action of the Anticancer Activities of Triterpenoids and Synthetic Analogs 
Triterpenoids such as betulinic acid (BA) and synthetic analogs of oleanolic acid [2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO)] and glycyrrhetinic acid [2-cyano-3,11-dioxo-18β-oleana-1,12-dien-30-oc acid (CDODA)] are potent anticancer agents that exhibit antiproliferative, antiangiogenic, anti-inflammatory and pro-apoptotic activities. Although their effects on multiple pathways have been reported, unifying mechanisms of action have not been reported. Studies in this laboratory have now demonstrated that several triterpenoids including BA and some derivatives, celastrol, methyl ursolatee, β-boswellic acid derivatives, and the synthetic analogs CDDO, CDODA and their esters decreased expression of specificity protein (Sp) transcription factors and several pro-oncogenic Sp-regulated genes in multiple cancer cell lines. The mechanisms of this response are both compound- and cell context-dependent and include activation of both proteasome-dependent and -independent pathways. Triterpenoid-mediated induction of reactive oxygen species (ROS) has now been characterized as an important proteasome-independent pathway for downregulation of Sp transcription factors. ROS decreases expression of microRNA-27a (miR-27a) and miR-20a/miR-17-5p and this results in the induction of the transcriptional “Sp-repressors” ZBTB10 and ZBTB4, respectively, which in turn downregulate Sp and Sp-regulated genes. Triterpenoids also activate or deactive nuclear receptors and G-protein coupled receptors, and these pathways contribute to their antitumorigenic activity and may also play a role in targeting Sp1, Sp3 and Sp4 which are highly overexpressed in multiple cancers and appear to be important for maintaining the cancer phenotype.
PMCID: PMC3532564  PMID: 22583404
Sp transcription factors; downregulation; reactive oxygen species
14.  Cytotoxicity of Pomegranate Polyphenolics in Breast Cancer Cells in Vitro and Vivo - Potential Role of miRNA-27a and miRNA-155 in Cell Survival and Inflammation 
Several studies have demonstrated that polyphenolics from pomegranate (Punica granatum L.) are potent inhibitors of cancer cell proliferation and induce apoptosis, cell cycle arrest, and also decrease inflammation in vitro and vivo. There is growing evidence that botanicals exert their cytotoxic and anti-inflammatory activities, at least in part, by decreasing specificity protein (Sp) transcription factors. These are overexpressed in breast-tumors and regulate genes important for cancer cell survival and inflammation such as the p65 unit of NF-κB. Moreover, previous studies have shown that Pg extracts decrease inflammation in lung cancer cell lines by inhibiting phosphatidylinositol 3,4,5-trisphosphate (PI3K)-dependent phosphorylation of AKT in vitro and inhibiting the activation of NF-kB in vivo. The objective of this study was to investigate the roles of miR-27a-ZBTB10-Sp and miR-155-SHIP-1-PI3K on the anti-inflammatory and cytotoxic activity of pomegranate extract.
Pg extract (2.5–50 µg/ml) inhibited growth of BT-474 and MDA-MB-231 cells but not the non-cancer MCF-10F and MCF-12F cells. Pg extract significantly decreased Sp1, Sp3, and Sp4 as well as miR-27a in BT474 and MDA-MB-231 cells and increased expression of the transcriptional repressor ZBTB10. A significant decrease in Sp proteins and Sp-regulated genes was also observed. Pg extract also induced SHIP-1 expression and this was accompanied by downregulation of miRNA-155 and inhibition of PI3K-dependent phosphorylation of AKT. Similar results were observed in tumors from nude mice bearing BT474 cells as xenografts and treated with Pg extract. The effects of antagomirs and knockdown of SHIP-1 by RNA interference confirmed that the anti-inflammatory and cytotoxic effects of Pg extract were partly due to the disruption of both miR-27a-ZBTB10 and miR-155-SHIP-1.
In summary the anticancer activities of Pg extract in breast cancer cells were due in part to targeting microRNAs155 and 27a. Both pathways play an important role in the proliferative/inflammatory phenotype exhibited by these cell lines
doi:10.1007/s10549-012-2224-0
PMCID: PMC3488590  PMID: 22941571
Breast Cancer; Polyphenolics; Pomegranate; Xenografts; Inflammation; Cytotoxicity
15.  HOTAIR IS A NEGATIVE PROGNOSTIC FACTOR AND EXHIBITS PRO-ONCOGENIC ACTIVITY IN PANCREATIC CANCER 
Oncogene  2012;32(13):1616-1625.
HOTAIR is a long intervening non-coding RNA (lincRNA) that associates with the Polycomb Repressive Complex 2 (PRC2) and overexpression is correlated with poor survival for breast, colon and liver cancer patients. In this study, we show that HOTAIR expression is increased in pancreatic tumors compared to non-tumor tissue and is associated with more aggressive tumors. Knockdown of HOTAIR (siHOTAIR) by RNA interference shows that HOTAIR plays an important role in pancreatic cancer cell invasion and as reported in other cancer cell lines. In contrast, HOTAIR knockdown in Panc1 and L3.6pL pancreatic cancer cells that overexpress this lincRNA decreased cell proliferation, altered cell cycle progression, and induced apoptosis, demonstrating an expanded function for HOTAIR in pancreatic cancer cells compared to other cancer cell lines. Results of gene array studies showed that there was minimal overlap between HOTAIR-regulated genes in pancreatic vs. breast cancer cells and HOTAIR uniquely suppressed several interferon-related genes and gene sets related to cell cycle progression in pancreatic cancer cells and tumors. Analysis of selected genes suppressed by HOTAIR in Panc1 and L3.6 pL cells showed by knockdown of EZH2 and chromatin immunoprecipitation assays that HOTAIR-mediated gene repression was both PRC2-dependent and -independent. HOTAIR knockdown in L3.6pL cells inhibited tumor growth in mouse xenograft model, further demonstrating the pro-oncogenic function of HOTAIR in pancreatic cancer.
doi:10.1038/onc.2012.193
PMCID: PMC3484248  PMID: 22614017
HOTAIR; invasion; cell cycle progression; pro-oncogenic; prognostic
16.  Induction of the Transcriptional Repressor ZBTB4 in Prostate Cancer Cells by Drug-induced Targeting of microRNA-17-92/106b-25 Clusters 
Molecular cancer therapeutics  2012;11(9):1852-1862.
Androgen-insensitive DU145 and PC3 human prostate cancer cells express high levels of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4, and treatment of cells with methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate (CDODA-Me) inhibited cell growth and downregulated Sp1, Sp3 and Sp4 expression. CDODA-Me (15 mg/kg/d) was a potent inhibitor of tumor growth in a mouse xenograft model (PC3 cells) and also decreased expression of Sp transcription factors in tumors. CDODA-Me-mediated downregulation of Sp1, Sp3 and Sp4 was due to induction of the transcriptional repressor ZBTB4 which competitively binds and displaces Sp transcription factors from GC-rich sites in Sp1, Sp3, Sp4 and Sp-regulated gene promoters. ZBTB4 levels are relatively low in DU145 and PC3 cells due to suppression by microRNA (miR) paralogs that are members of the miR-17-92 (miR-20a/17-5p) and miR-106b-25 (miR-106b/93) clusters. Examination of publically available prostate cancer patient array data showed an inverse relationship between ZBTB4 and miRs-20a/17-5p/106b/93 expression, and increased ZBTB4 in prostate cancer patients was a prognostic factor for increased survival. CDODA-Me induces ZBTB4 in prostate cancer cells through disruption of miR-ZBTB4 interactions and this results in downregulation of pro-oncogenic Sp transcription factors and Sp-regulated genes.
doi:10.1158/1535-7163.MCT-12-0181
PMCID: PMC3632183  PMID: 22752225
ZBTB4; CDODA-Me; Sp; miR-17-92; miR-106b
17.  Chemoprevention of Skin Cancer with 1,1-Bis (3′-Indolyl)-1-(Aromatic) Methane Analog through Induction of the Orphan Nuclear Receptor, NR4A2 (Nurr1) 
PLoS ONE  2013;8(8):e69519.
Background
The objective of this study was to demonstrate the anti-skin cancer and chemopreventive potential of 1,1-bis(3′-indolyl)-1-(p-chlorophenyl methane) (DIM-D) using an in vitro model.
Methods
In vitro cell cytotoxicity and viability assays were carried out in A431 human epidermoid carcinoma cell line and normal human epidermal keratinocytes (NHEK) respectively by crystal violet staining. Apoptosis induction in A431 cells (DIM-D treated) and NHEK cells pretreated with DIM-D (2 hr) prior to UVB irradiation, were assessed. The accumulation of reactive oxygen species (ROS) in DIM-D pretreated NHEK cells (2 hr) prior to UVB exposure was also determined. Immunocytochemistry and western blot analysis was performed to determine cleaved caspase 3 and DNA damage markers in DIM-D treated A431 cells and in DIM-D pretreated NHEK cells prior to UVB irradiation.
Results
The IC50 values of DIM-D were 68.7±7.3, 48.3±10.1 and 11.5±3.1 μM whilst for Epigallocatechin gallate (EGCG) were 419.1±8.3, 186.1±5.2 and 56.7±3.1 μM for 24, 48 and 72 hr treatments respectively. DIM-D exhibited a significantly (p<0.05) greater induction of DNA fragmentation in A431 cells compared to EGCG with percent cell death of 38.9. In addition, DIM-D induced higher expression in A431 cells compared to EGCG of cleaved caspase 3 (3.0-fold vs. 2.4-fold changes), Nurr1 (2.7-fold vs. 1.7-fold changes) and NFκB (1.3-fold vs. 1.1-fold changes). DIM-D also exhibited chemopreventive activity in UVB-irradiated NHEK cells by significantly (p<0.05) reducing UVB-induced ROS formation and apoptosis compared to EGCG. Additionally, DIM-D induced expression of Nurr1 but reduced expression of 8-OHdG significantly in UVB-irradiated NHEK cells compared to EGCG and UV only.
Conclusion
Our results suggest that DIM-D exhibits Nurr1-dependent transactivation in the induction of apoptosis in A431 cells and it protects NHEK cells against UVB-induced ROS formation and DNA damage.
doi:10.1371/journal.pone.0069519
PMCID: PMC3737220  PMID: 23950896
18.  Role of peroxisome proliferator-activated receptor-γ and its co-activator DRIP205 in cellular responses to CDDO (RTA-401) in AML 
Cancer research  2010;70(12):4949-4960.
Peroxisome proliferator-activated receptor-γ (PPARγ) is a member of the nuclear receptor family of transcription factors with important regulatory roles in cellular growth, differentiation and apoptosis. Using proteomic analysis, we demonstrated expression of PPARγ protein in a series of 260 newly diagnosed primary AML samples. Forced expression of PPARγ enhanced the sensitivity of myeloid leukemic cells to PPARγ agonists CDDO- or 15d15DPGJ2-induced apoptosis, through preferential cleavage of caspase-8. No effects on cell cycle distribution or differentiation were noted, despite prominent induction of p21 in PPARγ-transfected cells. In turn, antagonizing PPARγ function by siRNA or pharmacological PPARγ inhibitor significantly diminished apoptosis induction by CDDO. Overexpression of co-activator protein DRIP205 resulted in enhanced differentiation induction by CDDO in AML cells through PPARγ activation. Studies with DRIP205 deletion constructs demonstrated that the NR boxes of DRIP205 are not required for this co-activation. In a Phase I clinical trial of CDDO (RTA-401) in leukemia, CDDO induced an increase in PPARγ mRNA expression in 6 of 9 patient samples; of those, induction of differentiation was documented in 4, and of p21 in 3 patients, all expressing DRIP205 protein. In summary, these findings suggest that cellular levels of PPARγ regulate induction of apoptosis via caspase-8 activation, while the co-activator DRIP205 is a determinant of induction of differentiation, in response to PPARγ agonists in leukemic cells.
doi:10.1158/0008-5472.CAN-09-1962
PMCID: PMC3727426  PMID: 20501850
PPARgamma; DRIP205; AML; CDDO; differentiation; apoptosis
19.  The Toxicology Education Summit: Building the Future of Toxicology Through Education 
Toxicological Sciences  2012;127(2):331-338.
Toxicology and careers in toxicology, as well as many other scientific disciplines, are undergoing rapid and dramatic changes as new discoveries, technologies, and hazards advance at a blinding rate. There are new and ever increasing demands on toxicologists to keep pace with expanding global economies, highly fluid policy debates, and increasingly complex global threats to public health. These demands must be met with new paradigms for multidisciplinary, technologically complex, and collaborative approaches that require advanced and continuing education in toxicology and associated disciplines. This requires paradigm shifts in educational programs that support recruitment, development, and training of the modern toxicologist, as well as continued education and retraining of the midcareer professional to keep pace and sustain careers in industry, government, and academia. The Society of Toxicology convened the Toxicology Educational Summit to discuss the state of toxicology education and to strategically address educational needs and the sustained advancement of toxicology as a profession. The Summit focused on core issues of: building for the future of toxicology through educational programs; defining education and training needs; developing the “Total Toxicologist”; continued training and retraining toxicologists to sustain their careers; and, finally, supporting toxicology education and professional development. This report summarizes the outcomes of the Summit, presents examples of successful programs that advance toxicology education, and concludes with strategies that will insure the future of toxicology through advanced educational initiatives.
doi:10.1093/toxsci/kfs111
PMCID: PMC3355314  PMID: 22461448
toxicology; education
20.  STRUCTURE-DEPENDENT ACTIVATION OF NR4A2 (Nurr1) BY 1,1-BIS(3′-INDOLYL)-1-(AROMATIC)METHANE ANALOGS IN PANCREATIC CANCER CELLS 
Biochemical pharmacology  2012;83(10):1445-1455.
NR4A2 (Nurr 1) is an orphan nuclear receptor with no known endogenous ligands and is highly expressed in many cancer cell lines including Panc1 and Panc28 pancreatic cancer cells. Structure-dependent activation of NR4A2 by a series of 1,1-bis(3′-indolyl)-1-(aromatic)methane (C-DIM) analogs was determined in pancreatic cancer cells transfected with yeast GAL4-Nurr1 chimeras and a UASx5-luc reporter gene or constructs containing response elements that bind NR4A2. Among 23 different structural analogs, phenyl groups containing p-substituted trifluoromethyl, t-butyl, cyano, bromo, iodo and trifluoromethoxy groups were the most active compounds in transactivation assay. The p-bromophenyl analog (DIM-C-pPhBr) was used as a model for structure-activity studies among a series of ortho-, meta- and para-bromophenyl isomers and the corresponding indole 2- and N-methyl analogs. Results show that NR4A2 activation was maximal with the p-bromophenyl analog and methylation of the indole NH group abrogated activity. Moreover, using GAL4-Nurr1 (full length) or GAL-Nurr1-A/B and GAL4-Nurr1-(C-F) chimeras expressing N- and C-terminal domains of Nurr1, respectively, DIM-C-pPhBr activated all three constructs and these responses were differentially affected by kinase inhibitors. DIM-C-pPhBr also modulated expression of several Nurr1-regulated genes in pancreatic cancer cells including vasoactive intestinal peptide (VIP), and the immunohistochemical and western blot analyses indicated that DIM-C-pPhBr activates nuclear NR4A2.
doi:10.1016/j.bcp.2012.02.021
PMCID: PMC3408083  PMID: 22405837
DIM analogs; NR4A2/Nurr1; structure-activity
21.  Pharmacokinetic evaluation and In Vitro–In Vivo Correlation (IVIVC) of novel methylene-substituted 3,3′ diindolylmethane (DIM) 
Purpose
3,3′-Diindolylmethane (DIM) is the major in vivo product of the acid-catalyzed oligomerization of indole-3-carbinol present in cruciferous vegetables. 1, 1-bis (3′-indolyl)-1-(p-substituted phenyl) methanes [C-substituted diindolylmethanes (C-DIMs)] are a new class of anticancer compounds derived from indole 3-carbinol. Despite rapidly increasing knowledge regarding mechanisms responsible for the chemopreventive properties of DIM-C-pPhC6H5, there have been relatively few studies determining the absorption and pharmacokinetic properties of DIM-C-pPhC6H5 to explore its clinical utility.
Methods
In this study, we assessed the solubility, lipophilicity and Caco-2 cell permeability of methylene-substituted DIM. Pharmacokinetic properties in rats were determined following i.v. and oral administration of a novel analog of DIM. Pharmacokinetic parameters were determined using noncompartmental and compartmental techniques with WinNonlin® 5.0 software. To explore potential In Vitro–In Vivo Correlation (IVIVC) between the in vitro permeability values, and the oral absorption pharmacokinetics, we employed deconvolution of i.v. and oral data using a three compartment Exact Loo–Riegelman method.
Results
The oral absorption and disposition were described by a three compartment model with combined zero-order/Michaelis–Menten limited systemic uptake using differential equations, at physiologically relevant doses. The saturation model obtained accounts for a nonlinear change in Cmax/Dose, and the absolute bioavailability (0.13 ± 0.06) was also dose dependent. The absorption rate profile of DIMC-pPhC6H5 across Caco-2 cells was significantly different than in vivo. Conclusions: The pharmacokinetic absorption model presented represents a useful basis for obtaining plasma level predictability for poorly bioavailable, highly lipophilic drugs, such as the DIM analog DIM-C-pPhC6H5.
doi:10.1016/j.ejps.2012.01.012
PMCID: PMC3374645  PMID: 22342559
Anticancer; Pharmacokinetic model; Chemoprevention; DIM; Anticarcinogen
22.  Celastrol decreases specificity proteins (Sp) and fibroblast growth factor receptor-3 (FGFR3) in bladder cancer cells 
Carcinogenesis  2012;33(4):886-894.
Celastrol (CSL) is a naturally occurring triterpenoid acid that exhibits anticancer activity, and in KU7 and 253JB-V bladder cells, CSL induced apoptosis, inhibited growth, colony formation and migration and CSL decreased bladder tumor growth in vivo. CSL also decreased expression of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and several Sp-regulated genes/proteins including vascular endothelial growth factor, survivin and cyclin D1 and fibroblast growth factor receptor-3, a potential drug target for bladder cancer therapy, has now been characterized as an Sp-regulated gene downregulated by CSL. The mechanism of Sp downregulation by CSL was cell context-dependent due to activation of proteosome-dependent (KU7) and -independent (253JB-V) pathways. In 253JB-V cells, CSL induced reactive oxygen species (ROS) and inhibitors of ROS blocked CSL-induced growth inhibition and repression of Sp1, Sp3 and Sp4. This response was due to induction of the Sp repressors ZBTB10 and ZBTB4 and downregulation of miR-27a and miR-20a/17-5p, respectively, which regulate expression of these transcriptional repressors. Thus, the anticancer activity of CSL in 253JB-V cells is due to induction of ROS and ROS-mediated induction of Sp repressors (ZBTB4/ZBTB10) through downregulation of miR-27a and miR-20a/17-5p.
doi:10.1093/carcin/bgs102
PMCID: PMC3324448  PMID: 22334592
23.  Endocrine disruptors and falling sperm counts: lessons learned or not! 
Asian Journal of Andrology  2012;15(2):191-194.
doi:10.1038/aja.2012.87
PMCID: PMC3739165  PMID: 23001442
24.  The Nuclear Receptor TR3 Regulates mTORC1 Signaling in Lung Cancer Cells Expressing Wild-type p53 
Oncogene  2011;31(27):3265-3276.
The orphan nuclear receptor TR3 (NR41A, Nur77) is overexpressed in most lung cancer patients and is a negative prognostic factor for patient survival. The function of TR3 was investigated in non-small cell lung cancer A549 and H460 cells, and knockdown of TR3 by RNA interference (siTR3) inhibited cancer cell growth and induced apoptosis. The prosurvival activity of TR3 was due, in part, to formation of a p300/TR3/Sp1 complex bound to GC-rich promoter regions of survivin and other Sp-regulated genes (mechanism 1). However, in p53 wild-type A549 and H460 cells, siTR3 inhibited the mTORC1 pathway and this was due to activation of p53 and induction of the p53-responsive gene sestrin 2 which subsequently activated the mTORC1 inhibitor AMPKα (mechanism 2). This demonstrates that the pro-oncogenic activity of TR3 in lung cancer cells was due to inhibition of p53 and activation of mTORC1. 1,1-Bis(3′-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) is a recently discovered inhibitor of TR3 which mimics the effects of siTR3. DIM-C-pPhOH inhibited growth and induced apoptosis in lung cancer cells and lung tumors in murine orthotopic and metastatic models, and this was accompanied by decreased expression of survivin and inhibition of mTORC1 signaling, demonstrating that inactivators of TR3 represent a novel class of mTORC1 inhibitors.
doi:10.1038/onc.2011.504
PMCID: PMC3299891  PMID: 22081070
TR3; Nur77; NR4A1; mTORC1; c-DIMs; lung cancer
25.  PAH Particles Perturb Prenatal Processes and Phenotypes: Protection from Deficits in Object Discrimination Afforded by Dampening of Brain Oxidoreductase Following In Utero Exposure to Inhaled Benzo(a)pyrene 
Toxicological Sciences  2011;125(1):233-247.
The wild-type (WT) Cprlox/lox (cytochrome P450 oxidoreductase, Cpr) mouse is an ideal model to assess the contribution of P450 enzymes to the metabolic activation and disposition of environmental xenobiotics. In the present study, we examined the effect of in utero exposure to benzo(a)pyrene [B(a)P] aerosol on Sp4 and N-methyl-D-aspartate (NMDA)–dependent systems as well as a resulting behavioral phenotype (object discrimination) in Cpr offspring. Results from in utero exposure of WT Cprlox/lox mice were compared with in utero exposed brain-Cpr-null offspring mice. Null mice were used as they do not express brain cytochrome P4501B1–associated NADPH oxidoreductase (CYP1B1-associated NADPH oxidoreductase), thus reducing their capacity to produce neural B(a)P metabolites. Subsequent to in utero (E14–E17) exposure to B(a)P (100 μg/m3), Cprlox/lox offspring exhibited: (1) elevated B(a)P metabolite and F2-isoprostane neocortical tissue burdens, (2) elevated concentrations of cortical glutamate, (3) premature developmental expression of Sp4, (4) decreased subunit ratios of NR2B:NR2A, and (5) deficits in a novelty discrimination phenotype monitored to in utero exposed brain-Cpr-null offspring. Collectively, these findings suggest that in situ generation of metabolites by CYP1B1-associated NADPH oxidoreductase promotes negative effects on NMDA-mediated signaling processes during the period when synapses are first forming as well as effects on a subsequent behavioral phenotype.
doi:10.1093/toxsci/kfr261
PMCID: PMC3243744  PMID: 21987461
NMDA receptor; neuronal activity; neurogenesis; synaptogenesis; polycyclic aromatic hydrocarbon; benzo(a)pyrene; susceptibility-exposure paradigm; B(a)P metabolites; object discrimination task

Results 1-25 (83)