Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Association of TNF-α –308G/A, SP-B 1580 C/T, IL-13 –1055 C/T gene polymorphisms and latent adenoviral infection with chronic obstructive pulmonary disease in an Egyptian population 
Chronic obstructive pulmonary disease (COPD) is a leading cause of disability and death. The most common cause of COPD is smoking. There is evidence suggesting that genetic factors influence COPD susceptibility and variants in several candidate genes have been significantly associated with COPD. In this study, we aimed to investigate the possible association of the TNF-α –308, SPB+1580, IL-13 –1055 gene polymorphisms and latent adenovirus C infection with COPD in an Egyptian population.
Material and methods
Our study included 115 subjects (75 smokers with COPD, 25 resistant smokers and 15 non-smokers) who were subjected to spirometric measurements, identification of adenovirus C and genotyping of TNF-α –308G/A, SP-B+1580 C/T and IL-13 –1055 C/T polymorphisms by real-time PCR.
The adenovirus C gene was identified in all subjects. The distribution of TNF-α genotypes showed no significant differences between different groups. However, homozygous A genotype was associated with a significant decrease in FEV1, FEV1/FVC and FEF25/75% of predicted in COPD (p < 0.05). As regards SP-B genotypes, resistant smokers had a significantly higher homozygous T genotype frequency compared to COPD and non smokers (p = 0.005). Interleukin 13 genotypes showed no significant difference between different groups. There was a significant decrease in FEF25/75% of predicted in T allele carriers in COPD patients (p = 0.001).
The COPD is a disease caused by the interaction of combined genes and environmental influences, in the presence of smoking and latent adenovirus C infection, TNF-α –308A, SPB +1580 T and IL-13 –1055 T polymorphisms predispose to the development of COPD.
PMCID: PMC3361041  PMID: 22662002
single nucleotide polymorphism; smoking; adenovirus C; chronic obstructive pulmonary disease
2.  A long-term study of bone mineral density in patients with phenylketonuria under diet therapy 
Dietary control of classic phenylketonuria (PKU) needs restriction of natural proteins; adequate protein intake is achieved by adding low phenylalanine (phe) formulae. The adequacy of this diet for normal bone mineralization had not been sufficiently evaluated. Our aim was to evaluate and follow up bone mineral density (BMD) in children and adolescents with PKU within a 2-year time interval to assess the adequacy of a phenylalanine restricted diet for bone mineralization and to search for a possible relationship between BMD, dietary control and blood phenylalanine (phe) concentrations.
Material and methods
Thirty-two patients with classic PKU (3-19 years) were evaluated for their bone mineral status using dual energy X-ray absorptiometry (DEXA) both at the beginning (baseline) and the end (follow-up) of the study.
Low BMD was detected in 31.25% at the start and in 6.25% of patients after 2 years follows-up. No relationship was found between BMD and the duration of diet compliance and phe level as well.
In this study the low BMD detected in our patients was both at baseline and follow-up independent of diet restriction. A yearly DEXA would be highly beneficial for early detection and treatment, thus preventing osteoporosis and decreasing the risk of fractures. We also suggest the importance of searching for new emerging therapies such as enzyme substitution or gene therapy as low protein diet compliance was not enough to maintain normal bone mineral density.
PMCID: PMC3258737  PMID: 22295034
phenylketonuria; osteoporosis; bone mineral density; diet

Results 1-2 (2)