Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Interferon Regulatory Factor (IRF)-1 Is a Master Regulator of the Cross Talk between Macrophages and L929 Fibrosarcoma Cells for Nitric Oxide Dependent Tumoricidal Activity 
PLoS ONE  2015;10(2):e0117782.
Macrophage tumoricidal activity relies, mainly, on the release of Tumor Necrosis Factor alpha (TNFα) and/or on reactive oxygen or nitrogen intermediates. In the present work, we investigated the cytotoxic activity of resident peritoneal macrophages against L929 fibrosarcoma cell line in vitro and in vivo. Resident macrophages lysed L929 cells in a mechanism independent of TNFα and cell-to-cell contact. The cytotoxic activity was largely dependent on nitric oxide (NO) release since treatment with L-NAME (NOS inhibitor) inhibited L929 cells killing. Macrophages from mice with targeted deletion of inducible NO synthase (iNOS) together with L929 cells produced less NO and displayed lower, but still significant, tumoricidal activity. Notably, NO production and tumor lysis were abolished in co-cultures with macrophages deficient in Interferon Regulatory Factor, IRF-1. Importantly, the in vitro findings were reproduced in vivo as IRF-1 deficient animals inoculated i.p with L929 cells were extremely susceptible to tumor growth and their macrophages did not produce NO, while WT mice killed L929 tumor cells and their macrophages produced high levels of NO. Our results indicate that IRF-1 is a master regulator of bi-directional interaction between macrophages and tumor cells. Overall, IRF-1 was essential for NO production by co-cultures and macrophage tumoricidal activity in vitro as well as for the control of tumor growth in vivo.
PMCID: PMC4449231  PMID: 25659093
2.  Predictive Criteria to Study the Pathogenesis of Malaria-Associated ALI/ARDS in Mice 
Mediators of Inflammation  2014;2014:872464.
Malaria-associated acute lung injury/acute respiratory distress syndrome (ALI/ARDS) often results in morbidity and mortality. Murine models to study malaria-associated ALI/ARDS have been described; we still lack a method of distinguishing which mice will develop ALI/ARDS before death. This work aimed to characterize malaria-associated ALI/ARDS in a murine model and to demonstrate the first method to predict whether mice are suffering from ALI/ARDS before death. DBA/2 mice infected with Plasmodium berghei ANKA developing ALI/ARDS or hyperparasitemia (HP) were compared using histopathology, PaO2 measurement, pulmonary X-ray, breathing capacity, lung permeability, and serum vascular endothelial growth factor (VEGF) levels according to either the day of death or the suggested predictive criteria. We proposed a model to predict malaria-associated ALI/ARDS using breathing patterns (enhanced pause and frequency respiration) and parasitemia as predictive criteria from mice whose cause of death was known to retrospectively diagnose the sacrificed mice as likely to die of ALI/ARDS as early as 7 days after infection. Using this method, we showed increased VEGF levels and increased lung permeability in mice predicted to die of ALI/ARDS. This proposed method for accurately identifying mice suffering from ALI/ARDS before death will enable the use of this model to study the pathogenesis of this disease.
PMCID: PMC4167651  PMID: 25276057
3.  Endotoxin Exposure during Sensitization to Blomia tropicalis Allergens Shifts TH2 Immunity Towards a TH17-Mediated Airway Neutrophilic Inflammation: Role of TLR4 and TLR2 
PLoS ONE  2013;8(6):e67115.
Experimental evidence and epidemiological studies indicate that exposure to endotoxin lipopolysaccharide (eLPS) or other TLR agonists prevent asthma. We have previously shown in the OVA-model of asthma that eLPS administration during alum-based allergen sensitization blocked the development of lung TH2 immune responses via MyD88 pathway and IL-12/IFN-γ axis. In the present work we determined the effect of eLPS exposure during sensitization to a natural airborne allergen extract derived from the house dust mite Blomia tropicalis (Bt). Mice were subcutaneously sensitized with Bt allergens co-adsorbed onto alum with or without eLPS and challenged twice intranasally with Bt. Cellular and molecular parameters of allergic lung inflammation were evaluated 24 h after the last Bt challenge. Exposure to eLPS but not to ultrapure LPS (upLPS) preparation during sensitization to Bt allergens decreased the influx of eosinophils and increased the influx of neutrophils to the airways. Inhibition of airway eosinophilia was not observed in IFN-γdeficient mice while airway neutrophilia was not observed in IL-17RA-deficient mice as well in mice lacking MyD88, CD14, TLR4 and, surprisingly, TLR2 molecules. Notably, exposure to a synthetic TLR2 agonist (PamCSK4) also induced airway neutrophilia that was dependent on TLR2 and TLR4 molecules. In the OVA model, exposure to eLPS or PamCSK4 suppressed OVA-induced airway inflammation. Our results suggest that B. tropicalis allergens engage TLR4 that potentiates TLR2 signaling. This dual TLR activation during sensitization results in airway neutrophilic inflammation associated with increased frequency of lung TH17 cells. Our work highlight the complex interplay between bacterial products, house dust mite allergens and TLR signaling in the induction of different phenotypes of airway inflammation.
PMCID: PMC3689683  PMID: 23805294
4.  Role of M2 Muscarinic Receptor in the Airway Response to Methacholine of Mice Selected for Minimal or Maximal Acute Inflammatory Response 
BioMed Research International  2013;2013:805627.
Airway smooth muscle constriction induced by cholinergic agonists such as methacholine (MCh), which is typically increased in asthmatic patients, is regulated mainly by muscle muscarinic M3 receptors and negatively by vagal muscarinic M2 receptors. Here we evaluated basal (intrinsic) and allergen-induced (extrinsic) airway responses to MCh. We used two mouse lines selected to respond maximally (AIRmax) or minimally (AIRmin) to innate inflammatory stimuli. We found that in basal condition AIRmin mice responded more vigorously to MCh than AIRmax. Treatment with a specific M2 antagonist increased airway response of AIRmax but not of AIRmin mice. The expression of M2 receptors in the lung was significantly lower in AIRmin compared to AIRmax animals. AIRmax mice developed a more intense allergic inflammation than AIRmin, and both allergic mouse lines increased airway responses to MCh. However, gallamine treatment of allergic groups did not affect the responses to MCh. Our results confirm that low or dysfunctional M2 receptor activity is associated with increased airway responsiveness to MCh and that this trait was inherited during the selective breeding of AIRmin mice and was acquired by AIRmax mice during allergic lung inflammation.
PMCID: PMC3652127  PMID: 23691511
5.  Regulatory T Cells Accumulate in the Lung Allergic Inflammation and Efficiently Suppress T-Cell Proliferation but Not Th2 Cytokine Production 
Foxp3+CD25+CD4+ regulatory T cells are vital for peripheral tolerance and control of tissue inflammation. In this study, we characterized the phenotype and monitored the migration and activity of regulatory T cells present in the airways of allergic or tolerant mice after allergen challenge. To induce lung allergic inflammation, mice were sensitized twice with ovalbumin/aluminum hydroxide gel and challenged twice with intranasal ovalbumin. Tolerance was induced by oral administration of ovalbumin for 5 consecutive days prior to OVA sensitization and challenge. We detected regulatory T cells (Foxp3+CD25+CD4+ T cells) in the airways of allergic and tolerant mice; however, the number of regulatory T cells was more than 40-fold higher in allergic mice than in tolerant mice. Lung regulatory T cells expressed an effector/memory phenotype (CCR4highCD62LlowCD44highCD54highCD69+) that distinguished them from naive regulatory T cells (CCR4intCD62LhighCD44intCD54intCD69−). These regulatory T cells efficiently suppressed pulmonary T-cell proliferation but not Th2 cytokine production.
PMCID: PMC3227414  PMID: 22162718
6.  Respiratory allergy to Blomia tropicalis: Immune response in four syngeneic mouse strains and assessment of a low allergen-dose, short-term experimental model 
Respiratory Research  2010;11(1):51.
The dust mite Blomia tropicalis is an important source of aeroallergens in tropical areas. Although a mouse model for B. tropicalis extract (BtE)-induced asthma has been described, no study comparing different mouse strains in this asthma model has been reported. The relevance and reproducibility of experimental animal models of allergy depends on the genetic background of the animal, the molecular composition of the allergen and the experimental protocol.
This work had two objectives. The first was to study the anti-B. tropicalis allergic responses in different mouse strains using a short-term model of respiratory allergy to BtE. This study included the comparison of the allergic responses elicited by BtE with those elicited by ovalbumin in mice of the strain that responded better to BtE sensitization. The second objective was to investigate whether the best responder mouse strain could be used in an experimental model of allergy employing relatively low BtE doses.
Groups of mice of four different syngeneic strains were sensitized subcutaneously with 100 μg of BtE on days 0 and 7 and challenged four times intranasally, at days 8, 10, 12, and 14, with 10 μg of BtE. A/J mice, that were the best responders to BtE sensitization, were used to compare the B. tropicalis-specific asthma experimental model with the conventional experimental model of ovalbumin (OVA)-specific asthma. A/J mice were also sensitized with a lower dose of BtE.
Mice of all strains had lung inflammatory-cell infiltration and increased levels of anti-BtE IgE antibodies, but these responses were significantly more intense in A/J mice than in CBA/J, BALB/c or C57BL/6J mice. Immunization of A/J mice with BtE induced a more intense airway eosinophil influx, higher levels of total IgE, similar airway hyperreactivity to methacholine but less intense mucous production, and lower levels of specific IgE, IgG1 and IgG2 antibodies than sensitization with OVA. Finally, immunization with a relatively low BtE dose (10 μg per subcutaneous injection per mouse) was able to sensitize A/J mice, which were the best responders to high-dose BtE immunization, for the development of allergy-associated immune and lung inflammatory responses.
The described short-term model of BtE-induced allergic lung disease is reproducible in different syngeneic mouse strains, and mice of the A/J strain was the most responsive to it. In addition, it was shown that OVA and BtE induce quantitatively different immune responses in A/J mice and that the experimental model can be set up with low amounts of BtE.
PMCID: PMC2890645  PMID: 20433763
7.  Syzygium jambolanum treatment improves survival in lethal sepsis induced in mice 
The leaves and the fruits from Syzygium jambolanum DC.(Myrtaceae), a plant known in Brazil as sweet olive or 'jambolão', have been used by native people to treat infectious diseases, diabetes, and stomachache. Since the bactericidal activity of S. jambolanum has been confirmed in vitro, the aim of this work was to evaluate the effect of the prophylactic treatment with S. jambolanum on the in vivo polymicrobial infection induced by cecal ligation and puncture (CLP) in mice.
C57Bl/6 mice were treated by the subcutaneous route with a hydroalcoholic extract from fresh leaves of S. jambolanum (HCE). After 6 h, a bacterial infection was induced in the peritoneum using the lethal CLP model. The mice were killed 12 h after the CLP induction to evaluate the cellular influx and local and systemic inflammatory mediators' production. Some animals were maintained alive to evaluate the survival rate.
The prophylactic HCE treatment increased the mice survival, the neutrophil migration to infectious site, the spreading ability and the hydrogen peroxide release, but decreased the serum TNF and nitrite. Despite the increased migration and activation of peritoneal cells the HCE treatment did not decrease the number of CFU. The HCE treatment induced a significant decrease on the bone marrow cells number but did not alter the cell number of the spleen and lymph node.
We conclude that the treatment with S. jambolanum has a potent prophylactic anti-septic effect that is not associated to a direct microbicidal effect but it is associated to a recruitment of activated neutrophils to the infectious site and to a diminished systemic inflammatory response.
PMCID: PMC2571085  PMID: 18851742
8.  Role of Endogenous IFN-γ in Macrophage Programming Induced by IL-12 and IL-18 
Besides the established role of interleukin-12 (IL-12) and IL-18 on interferon-γ (IFN-γ) production by natural killer (NK), T, and B cells, the effects of these cytokines on macrophages are largely unknown. Here, we investigated the role of IL-12/IL-18 on nitric oxide (NO) and tumor necrosis factor-α (TNF-α) production by CD11b+ adherent peritoneal cells, focusing on the involvement of endogenously produced IFN-γ. C57BL/6 cells released substantial amounts of NO when stimulated with IFN-γ or lipopolysaccharide (LPS), but failed to respond to IL-12 or IL-18 or both. However, IL-12/IL-18 pretreatment was able to program these cells to release 6–8-fold more NO and TNF-α in response to LPS or Trypanosoma cruzi stimulation, with NO levels directly correlating with macrophage resistance to intracellular parasite growth. Analysis of IL-12/IL-18-primed cells from mice deficient in IFN-γ, IFNGR, and IFN regulatory factor-1 (IRF-1) revealed that these molecules were essential for LPS-induced NO release, but TNF-α production was IFN-γ independent. Conversely, the myeloid differentiation factor 88 (MyD88)-dependent pathway was indispensable for IL-12/IL-18-programmed LPS-induced TNF-α production, but not for NO release. Contaminant T and NK cells largely modulated the IL-12/IL-18 programming of LPS-induced NO response through IFN-γ secretion. Nevertheless, a small population of IFN-γ+ cells with a macrophage phenotype was also identified, particularly in the peritoneum of chronically T. cruzi-infected mice, reinforcing the notion that macrophages can be an alternative source of IFN-γ. Taken together, our data contribute to elucidate the molecular basis of the IL-12/IL-18 autocrine pathway of macrophage activation, showing that endogenous IFN-γ plays an important role in programming the NO response, whereas the TNF-α response occurs through an IFN-γ-independent pathway.
PMCID: PMC2956645  PMID: 17523872
9.  Oral tolerance in the absence of naturally occurring Tregs 
Journal of Clinical Investigation  2005;115(7):1923-1933.
Mucosal tolerance prevents pathological reactions against environmental and food antigens, and its failure results in exacerbated inflammation typical of allergies and asthma. One of the proposed mechanisms of oral tolerance is the induction of Tregs. Using a mouse model of hyper-IgE and asthma, we found that oral tolerance could be effectively induced in the absence of naturally occurring thymus-derived Tregs. Oral antigen administration prior to i.p. immunization prevented effector/memory Th2 cell development, germinal center formation, class switching to IgE, and lung inflammation. Oral exposure to antigen induced development of antigen-specific CD4+CD25+Foxp3+CD45RBlow cells that were anergic and displayed suppressive activity in vivo and in vitro. Oral tolerance to the Th2 allergic response was in large part dependent on TGF-β and independent of IL-10. Interestingly, Tregs were also induced by single i.p. immunization with antigen and adjuvant. However, unlike oral administration of antigen, which induced Tregs but not effector T cells, i.p. immunization led to the simultaneous induction of Tregs and effector Th2 cells displaying the same antigen specificity.
PMCID: PMC1142115  PMID: 15937545
10.  FAS Ligand Triggers Pulmonary Silicosis 
We investigated the role of Fas ligand in murine silicosis. Wild-type mice instilled with silica developed severe pulmonary inflammation, with local production of tumor necrosis factor (TNF)-α, and interstitial neutrophil and macrophage infiltration in the lungs. Strikingly, Fas ligand–deficient generalized lymphoproliferative disease mutant (gld) mice did not develop silicosis. The gld mice had markedly reduced neutrophil extravasation into bronchoalveolar space, and did not show increased TNF-α production, nor pulmonary inflammation. Bone marrow chimeras and local adoptive transfer demonstrated that wild-type, but not Fas ligand–deficient lung macrophages recruit neutrophils and initiate silicosis. Silica induced Fas ligand expression in lung macrophages in vitro and in vivo, and promoted Fas ligand–dependent macrophage apoptosis. Administration of neutralizing anti-Fas ligand antibody in vivo blocked induction of silicosis. Thus, Fas ligand plays a central role in induction of pulmonary silicosis.
PMCID: PMC2193452  PMID: 11457890
Fas ligand; silicosis; macrophages; neutrophils; inflammation

Results 1-10 (10)