PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (57)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
1.  Updates in the real-time Dose Tracking System (DTS) to improve the accuracy in calculating the radiation dose to the patients skin during fluoroscopic procedures 
We have developed a dose-tracking system (DTS) to manage the risk of deterministic skin effects to the patient during fluoroscopic image-guided interventional cardiac procedures. The DTS calculates the radiation dose to the patient’s skin in real-time by acquiring exposure parameters and imaging-system geometry from the digital bus on a Toshiba C-arm unit and displays the cumulative dose values as a color map on a 3D graphic of the patient for immediate feedback to the interventionalist. Several recent updates have been made to the software to improve its function and performance. Whereas the older system needed manual input of pulse rate for dose-rate calculation and used the CPU clock with its potential latency to monitor exposure duration, each x-ray pulse is now individually processed to determine the skin-dose increment and to automatically measure the pulse rate. We also added a correction for the table pad which was found to reduce the beam intensity to the patient for under-table projections by an additional 5–12% over that of the table alone at 80 kVp for the x-ray filters on the Toshiba system. Furthermore, mismatch between the DTS graphic and the patient skin can result in inaccuracies in dose calculation because of inaccurate inverse-square-distance calculation. Therefore, a means for quantitative adjustment of the patient-graphic-model position and a parameterized patient-graphic library have been developed to allow the graphic to more closely match the patient. These changes provide more accurate estimation of the skin-dose which is critical for managing patient radiation risk.
doi:10.1117/12.2007706
PMCID: PMC4013095  PMID: 24817801
Interventional fluoroscopic procedures; dose tracking system; skin dose; fluoroscopy; dose mapping
2.  Improved contrast and spatial resolution with Single Photon Counting (SPC) for an area x-ray imager, the newly developed high-resolution Micro-Angiographic Fluoroscopic (MAF) detector 
Although in radiological imaging, the prevailing mode of acquisition is the integration of the energy deposited by all x-rays absorbed in the imaging detector, much improvement in image spatial and contrast resolution could be achieved if each individual x-ray photon were detected and counted separately. In this work we compare the conventional energy integration (EI) mode with the new single photon counting (SPC) mode for a recently developed high-resolution Micro-Angiographic Fluoroscopic (MAF) detector, which is uniquely capable of both modes of operation. The MAF has 1024×1024 pixels of 35 microns effective size and is capable of real-time imaging at 30 fps. The large variable gain of its light image intensifier (LII) provides quantum limited operation with essentially no additive instrumentation noise and enables the MAF to operate in both EI and the very sensitive low-exposure SPC modes. We used high LII gain with very low exposure (<1 x-ray photon/pixel) per frame for SPC mode and higher exposure per frame with lower gain for EI mode. Multiple signal-thresholded frames were summed in SPC mode to provide an integrated frame with the same total exposure as EI mode. A heavily K-edge filtered x-ray beam (average energy of 31 keV) was used to provide a nearly monochromatic spectrum. The MTF measured using a standard slit method showed a dramatic improvement for the SPC mode over the EI mode at all frequencies. Images of a line pair phantom also showed improved spatial resolution with 12 lp/mm visible in SPC mode compared to only 8 lp/mm in EI mode. In SPC mode, images of human distal and middle phalanges showed the trabecular structures of the bone with far better contrast and detail. These improvements with the SPC mode should be advantageous for clinical applications where high resolution and/or high contrast are essential such as in mammography and extremity imaging as well as for dual modality applications, which combine nuclear medicine and x-ray imaging using a single detector.
doi:10.1109/NSSMIC.2009.5401587
PMCID: PMC3991167  PMID: 24748764
3.  Endovascular coil embolization of a very small ruptured aneurysm using a novel microangiographic technique: technical note 
Endovascular treatment of very small aneurysms is technically difficult, although recent advances with coils, microcatheters and adjunctive techniques such as balloon- or stent-assisted coiling have improved the outcomes. The microangiographic fluoroscope (MAF) is a new high-resolution x-ray detector developed for neurointerventional procedures in which superior resolution is required within a small field of view. We report the successful coil embolization of a very small ruptured anterior communicating artery aneurysm using the MAF technique. The use of the MAF facilitated the precision of the coiling procedure and was helpful in preventing catheter- and coil-related intraprocedural complications.
doi:10.1136/neurintsurg-2011-010154
PMCID: PMC3477289  PMID: 22266790
4.  Region-of-Interest Micro-Angiographic Fluoroscope Detector Used in Aneurysm and Artery Stenosis Diagnoses and Treatment 
Proceedings of SPIE  2012;8313:10.1117/12.910771.
Due to the need for high-resolution angiographic and interventional vascular imaging, a Micro-Angiographic Fluoroscope (MAF) detector with a Control, Acquisition, Processing, and Image Display System (CAPIDS) was installed on a detector changer, which was attached to the C-arm of a clinical angiographic unit at a local hospital. The MAF detector provides high-resolution, high-sensitivity, and real-time imaging capabilities and consists of a 300 µm-thick CsI phosphor, a dual stage micro-channel plate light image intensifier (LII) coupled to a fiber optic taper (FOT), and a scientific grade frame-transfer CCD camera, providing an image matrix of 1024×1024 35 µm effective square pixels with 12 bit depth. The changer allows the MAF region-of-interest (ROI) detector to be inserted in front of the Image Intensifier (II) when higher resolution is needed during angiographic or interventional vascular imaging procedures, e.g. endovascular stent deployment. The CAPIDS was developed and implemented using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) software and provides a user-friendly interface that enables control of several clinical radiographic imaging modes of the MAF including: fluoroscopy, roadmapping, radiography, and digital-subtraction-angiography (DSA). The total system has been used for image guidance during endovascular image-guided interventions (EIGI) for diagnosing and treating artery stenoses and aneurysms using self-expanding endovascular stents and coils in fifteen patient cases, which have demonstrated benefits of using the ROI detector. The visualization of the fine detail of the endovascular devices and the vessels generally gave the clinicians confidence on performing neurovascular interventions and in some instances contributed to improved interventions.
doi:10.1117/12.910771
PMCID: PMC3877313  PMID: 24386538
Neuro-imaging; neuro-endovascular image-guided interventions; x-ray imaging; fluoroscopic detector; high-resolution imaging
5.  Graphical User Interface for a Dual-Module EMCCD X-ray Detector Array 
A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000× to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2k×1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.
doi:10.1117/12.877588
PMCID: PMC3865244  PMID: 24357902
Image Guided Interventions; Graphical User Interface; Solid State X-ray Image Intensifier (SSXII); Electron-Multiplying CCD (EMCCD); Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW); System
6.  Significance of Including Field Non-Uniformities Such as the Heel Effect and Beam Scatter in the Determination of the Skin Dose Distribution during Interventional Fluoroscopic Procedures 
The current version of the real-time skin-dose-tracking system (DTS) we have developed assumes the exposure is contained within the collimated beam and is uniform except for inverse-square variation. This study investigates the significance of factors that contribute to beam non-uniformity such as the heel effect and backscatter from the patient to areas of the skin inside and outside the collimated beam. Dose-calibrated Gafchromic film (XR-RV3, ISP) was placed in the beam in the plane of the patient table at a position 15 cm tube-side of isocenter on a Toshiba Infinix C-Arm system. Separate exposures were made with the film in contact with a block of 20-cm solid water providing backscatter and with the film suspended in air without backscatter, both with and without the table in the beam. The film was scanned to obtain dose profiles and comparison of the profiles for the various conditions allowed a determination of field non-uniformity and backscatter contribution. With the solid-water phantom and with the collimator opened completely for the 20-cm mode, the dose profile decreased by about 40% on the anode side of the field. Backscatter falloff at the beam edge was about 10% from the center and extra-beam backscatter decreased slowly with distance from the field, being about 3% of the beam maximum at 6 cm from the edge. Determination of the magnitude of these factors will allow them to be included in the skin-dose-distribution calculation and should provide a more accurate determination of peak-skin dose for the DTS.
doi:10.1117/12.911528
PMCID: PMC3865277  PMID: 24357908
Interventional fluoroscopic procedures; Dose tracking system; Gafchromic film (XR-RV3; ISP); Skin dose; Backscatter; Heel effect
7.  Evaluation of embolic deflection device using optical particle tracking 
Trans-aortic valve replacement is a new endovascular procedure which has started to be used routinely in cardiac interventional suites. During such procedures a stent-like device containing new aortic valves is placed over the damaged ones, possibly causing calcifications to be dislodged and released in arteries leading to stroke. To prevent such events, new devices are being developed to provide distal protection to the brain supplying arteries. Currently there is a need to evaluate such device efficacy in a repeatable manner. We are proposing and investigating such a method based on particle optical tracking. We simulated such protective devices using two porous screens (150 and 200 μm pore size) which were placed in an arterial bifurcation phantom connected to a clinically relevant flow loop. A mask was acquired and gold embolic particles (100–300μm) were injected at a steady rate using a motorized injector. Optical images with 2 ms exposure were acquired at 30 fps. Images were subtracted, thresholded and filtered using a 5×5 median filter. ROI's were drawn over the main and bifurcating arteries and a particle counting algorithm was used to estimate particle flow rates in each artery for each run. The unprotected and the two protected cases were evaluated. Before filter placement, the particle flow rate was 60 and 40 %, respectively, of the main artery. After the filter placement, the particle flow rate in the protected branch was 4% and 8% of the particle flow rate in the main artery. We present a method to assess the efficacy of such devices using an optical particle tracking and counting technique.
doi:10.1117/12.2004319
PMCID: PMC3864933  PMID: 24353394
embolic deflection device; optical particle tracking; Trans-aortic valve replacement
8.  Design considerations for a new, high resolution Micro-Angiographic Fluoroscope based on a CMOS sensor (MAF-CMOS) 
The detectors that are used for endovascular image-guided interventions (EIGI), particularly for neurovascular interventions, do not provide clinicians with adequate visualization to ensure the best possible treatment outcomes. Developing an improved x-ray imaging detector requires the determination of estimated clinical x-ray entrance exposures to the detector. The range of exposures to the detector in clinical studies was found for the three modes of operation: fluoroscopic mode, high frame-rate digital angiographic mode (HD fluoroscopic mode), and DSA mode. Using these estimated detector exposure ranges and available CMOS detector technical specifications, design requirements were developed to pursue a quantum limited, high resolution, dynamic x-ray detector based on a CMOS sensor with 50 μm pixel size. For the proposed MAF-CMOS, the estimated charge collected within the full exposure range was found to be within the estimated full well capacity of the pixels. Expected instrumentation noise for the proposed detector was estimated to be 50–1,300 electrons. Adding a gain stage such as a light image intensifier would minimize the effect of the estimated instrumentation noise on total image noise but may not be necessary to ensure quantum limited detector operation at low exposure levels. A recursive temporal filter may decrease the effective total noise by 2 to 3 times, allowing for the improved signal to noise ratios at the lowest estimated exposures despite consequent loss in temporal resolution. This work can serve as a guide for further development of dynamic x-ray imaging prototypes or improvements for existing dynamic x-ray imaging systems.
doi:10.1117/12.2006430
PMCID: PMC3864963  PMID: 24353389
MAF; CMOS; ROI; fluoroscopy; angiography; x-ray imaging; detector design; neurovascular interventions
9.  Theoretical performance analysis for CMOS based high resolution detectors 
High resolution imaging capabilities are essential for accurately guiding successful endovascular interventional procedures. Present x-ray imaging detectors are not always adequate due to their inherent limitations. The newly-developed high-resolution micro-angiographic fluoroscope (MAF-CCD) detector has demonstrated excellent clinical image quality; however, further improvement in performance and physical design may be possible using CMOS sensors. We have thus calculated the theoretical performance of two proposed CMOS detectors which may be used as a successor to the MAF.
The proposed detectors have a 300 μm thick HL-type CsI phosphor, a 50 μm-pixel CMOS sensor with and without a variable gain light image intensifier (LII), and are designated MAF-CMOS-LII and MAF-CMOS, respectively. For the performance evaluation, linear cascade modeling was used. The detector imaging chains were divided into individual stages characterized by one of the basic processes (quantum gain, binomial selection, stochastic and deterministic blurring, additive noise). Ranges of readout noise and exposure were used to calculate the detectors’ MTF and DQE.
The MAF-CMOS showed slightly better MTF than the MAF-CMOS-LII, but the MAF-CMOS-LII showed far better DQE, especially for lower exposures.
The proposed detectors can have improved MTF and DQE compared with the present high resolution MAF detector. The performance of the MAF-CMOS is excellent for the angiography exposure range; however it is limited at fluoroscopic levels due to additive instrumentation noise. The MAF-CMOS-LII, having the advantage of the variable LII gain, can overcome the noise limitation and hence may perform exceptionally for the full range of required exposures; however, it is more complex and hence more expensive.
doi:10.1117/12.2006217
PMCID: PMC3864964  PMID: 24353390
MTF; DQE; CMOS; MAF; Linear Cascade Model; interventional imaging; x-ray image detector
10.  Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures 
Proceedings of SPIE  2012;8313:831343-.
We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient’s skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures.
doi:10.1117/12.911344
PMCID: PMC3766975  PMID: 24027616
skin dose; dosimetry; fluoroscopic dose; dose tracking; real-time dosimetry; fluoroscopic interventional procedures; GPU
11.  Investigation of metrics to assess vascular flow modifications for diverter device designs using hydrodynamics and angiographic studies 
Proceedings of SPIE  2012;8317:83170F-.
Intracranial aneurysm treatment with flow diverters (FD) is a new minimally invasive approach, recently approved for use in human patients. Attempts to correlate the flow reduction observed in angiograms with a parameter related to the FD structure have not been totally successful. To find the proper parameter, we investigated four porous-media flow models. The models describing the relation between the pressure drop and flow velocity that are investigated include the capillary theory linear model (CTLM), the drag force linear model (DFLM), the simple quadratic model (SQM) and the modified quadratic model (MQM). Proportionality parameters are referred to as permeability for the linear models and resistance for the quadratic ones. A two stage experiment was performed. First, we verified flow model validity by placing six different stainless-steel meshes, resembling FD structures, in known flow conditions. The best flow model was used for the second stage, where six different FD’s were inserted in aneurysm phantoms and flow modification was estimated using angiographically derived time density curves (TDC). Finally, TDC peak variation was compared with the FD parameter. Model validity experiments indicated errors of: 70% for the linear models, 26% for the SQM and 7% for the MQM. The resistance calculated according to the MQM model correlated well with the contrast flow reduction. Results indicate that resistance calculated according to MQM is appropriate to characterize the FD and could explain the flow modification observed in angiograms.
doi:10.1117/12.915675
PMCID: PMC3767005  PMID: 24027624
flow diverter; digital subtraction angiography; aneurysms; flow resistance; permeability
12.  New head equivalent phantom for task and image performance evaluation representative for neurovascular procedures occurring in the Circle of Willis 
Proceedings of SPIE  2012;8313:83130Q-.
Phantom equivalents of different human anatomical parts are routinely used for imaging system evaluation or dose calculations. The various recommendations on the generic phantom structure given by organizations such as the AAPM, are not always accurate when evaluating a very specific task. When we compared the AAPM head phantom containing 3 mm of aluminum to actual neuro-endovascular image guided interventions (neuro-EIGI) occurring in the Circle of Willis, we found that the system automatic exposure rate control (AERC) significantly underestimated the x-ray parameter selection. To build a more accurate phantom for neuro-EIGI, we reevaluated the amount of aluminum which must be included in the phantom. Human skulls were imaged at different angles, using various angiographic exposures, at kV’s relevant to neuro-angiography. An aluminum step wedge was also imaged under identical conditions, and a correlation between the gray values of the imaged skulls and those of the aluminum step thicknesses was established. The average equivalent aluminum thickness for the skull samples for frontal projections in the Circle of Willis region was found to be about 13 mm. The results showed no significant changes in the average equivalent aluminum thickness with kV or mAs variation. When a uniform phantom using 13 mm aluminum and 15 cm acrylic was compared with an anthropomorphic head phantom the x-ray parameters selected by the AERC system were practically identical. These new findings indicate that for this specific task, the amount of aluminum included in the head equivalent must be increased substantially from 3 mm to a value of 13 mm.
doi:10.1117/12.911351
PMCID: PMC3767006  PMID: 24027618
Head equivalent phantom; uniform phantom; Circle of Willis; fluoroscopy; digital subtracted angiography
13.  Use of the Microangiographic Fluoroscope for Coiling of Intracranial Aneurysms 
Neurosurgery  2011;69(5):1131-1138.
BACKGROUND
Neurointervention is an ever-evolving specialty with tools including microcatheters, microwires, and coils that allow treatment of pathological conditions in increasingly smaller intracranial arteries, requiring increasing accuracy. As endovascular tools evolve, so too should the imaging.
OBJECTIVE
To detail the use of microangiography performed with a novel fluoroscope during coiling of intracranial aneurysms in 2 separate patients and discuss the benefits and potential limitations of the technology.
METHODS
The microangiographic fluoroscope (MAF) is an ultra high-resolution x-ray detector with superior resolution over a small field of view. The MAF can be incorporated into a standard angiographic C-arm system for use during endovascular procedures.
RESULTS
The MAF was useful for improved visualization during endovascular coiling of 2 unruptured intracranial aneurysms, without adding significant time to the procedure. No significant residual aneurysm filling was identified post-coiling, and no complications occurred.
CONCLUSION
The MAF is a high-resolution detector developed for use in neurointerventional cases in which superior image quality over a small field of view is required. It has been used with success for coiling of 2 unruptured aneurysms at our institution. It shows promise as an important tool in improving the accuracy with which neurointerventionists can perform certain intracranial procedures.
doi:10.1227/NEU.0b013e3182299814
PMCID: PMC3706633  PMID: 21694658
Intracranial aneurysms; Microangiographic fluoroscope
14.  Component Level Modular Design of a Solid State X-ray Image Intensifier for an M×N Array 
The Solid-State X-ray Image Intensifier (SSXII) is a novel dynamic x-ray imager, based on an array of electron-multiplying CCDs (EMCCDs), that can significantly improve performance compared to conventional x-ray image intensifiers (XIIs) and flat panel detectors (FPDs). To expand the field-of-view (FOV) of the SSXII detectors while maintaining high resolution, a scalable component level modular design is presented. Each module can be fit together with minimum dead-space and optically coupled to one contiguous x-ray converter plate. The electronics of each of the modules consists of a detachable head-board, on which is mounted the EMCCD, and a driver board. The size of the head-boards is minimized to ensure that the modules fit together properly. The driver boards connect with the head-boards via flat cables and are designed to be plugged into the main mother-board that contains an FPGA chip that generates the driving clock signals for the EMCCDs and analog-to-digital converter (ADC). At the front-end, a high speed ADC on each of the driver boards samples and digitizes the EMCCD analog output signal and an extensible modular digital multiplexer back-end is used to acquire and combine image data from multiple modules. The combined digital data is then transmitted to a PC via a standard Camera Link interface. Eventually, this modular design will be extended to a 3×3 or larger array to accomplish full clinical FOVs and enable the SSXII to replace conventional lower-resolution XIIs or FPDs.
doi:10.1109/NSSMIC.2010.5874284
PMCID: PMC3596890  PMID: 23505331
15.  Optical Demonstration of a Medical Imaging System with an EMCCD-Sensor Array for Use in a High Resolution Dynamic X-ray Imager 
Use of an extensible array of Electron Multiplying CCDs (EMCCDs) in medical x-ray imager applications was demonstrated for the first time. The large variable electronic-gain (up to 2000) and small pixel size of EMCCDs provide effective suppression of readout noise compared to signal, as well as high resolution, enabling the development of an x-ray detector with far superior performance compared to conventional x-ray image intensifiers and flat panel detectors. We are developing arrays of EMCCDs to overcome their limited field of view (FOV). In this work we report on an array of two EMCCD sensors running simultaneously at a high frame rate and optically focused on a mammogram film showing calcified ducts. The work was conducted on an optical table with a pulsed LED bar used to provide a uniform diffuse light onto the film to simulate x-ray projection images. The system can be selected to run at up to 17.5 frames per second or even higher frame rate with binning. Integration time for the sensors can be adjusted from 1 ms to 1000 ms. Twelve-bit correlated double sampling AD converters were used to digitize the images, which were acquired by a National Instruments dual-channel Camera Link PC board in real time. A user-friendly interface was programmed using LabVIEW to save and display 2K × 1K pixel matrix digital images. The demonstration tiles a 2 × 1 array to acquire increased-FOV stationary images taken at different gains and fluoroscopic-like videos recorded by scanning the mammogram simultaneously with both sensors. The results show high resolution and high dynamic range images stitched together with minimal adjustments needed. The EMCCD array design allows for expansion to an M×N array for arbitrarily larger FOV, yet with high resolution and large dynamic range maintained.
doi:10.1109/NSSMIC.2010.5874260
PMCID: PMC3596892  PMID: 23505330
16.  Overcoming x-ray tube small focal spot output limitations for high-resolution region of interest imaging 
Proceedings of SPIE  2012;8313:831358.
We investigate methods to increase x-ray tube output to enable improved quantum image quality with a higher generalized-NEQ (GNEQ) while maintaining a small focal-spot size for the new high-resolution Micro-angiographic Fluoroscope (MAF) Region of Interest (ROI) imaging system. Rather than using a larger focal spot to increase tube-loading capacity with degraded resolution, we evaluated separately or in combination three methods to increase tube output: 1) reducing the anode angle and lengthening the filament to maintain a constant effective small focal-spot size, 2) using the standard medium focal spot viewed from a direction on the anode side of the field and 3) increasing the frame rate (frames/second) in combination with temporal filter. The GNEQ was compared for the MAF for the small focal-spot at the central axis, and for the medium focal-spot with a higher output on the anode side as well as for the small focal spot with different temporal recursive filtering weights. A net output increase of about 4.0 times could be achieved with a 2-degree anode angle (without the added filtration) and a 4 times longer filament compared to that of the standard 8-degree target. The GNEQ was also increased for the medium focal-spot due to its higher output capacity and for the temporally filtered higher frame rate. Thus higher tube output, while maintaining a small effective focal-spot, should be achievable using one or more of the three methods described with only small modifications of standard x-ray tube geometry.
doi:10.1117/12.910791
PMCID: PMC3419545  PMID: 22905312
NEQ; Focal spot; GNEQ; ROI; MAF; EIGI; MTF; NNPS; X-ray tube; CNR
17.  Evaluation of intracranial aneurysm coil embolization in phantoms and patients using a high-resolution Microangiographic Fluoroscope (MAF) 
Proceedings of SPIE  2012;8313:831316.
Intracranial aneurysm (IA) embolization using Gugliemi Detachable Coils (GDC) under x-ray fluoroscopic guidance is one of the most important neuro-vascular interventions. Coil deposition accuracy is key and could benefit substantially from higher resolution imagers such as the micro-angiographic fluoroscope (MAF). The effect of MAF guidance improvement over the use of standard Flat Panels (FP) is challenging to assess for such a complex procedure. We propose and investigate a new metric, inter-frame cross-correlation sensitivity (CCS), to compare detector performance for such procedures. Pixel (P) and histogram (H) CCS’s were calculated as one minus the cross-correlation coefficients between pixel values and histograms for the region of interest at successive procedure steps. IA treatment using GDC’s was simulated using an anthropomorphic head phantom which includes an aneurysm. GDC’s were deposited in steps of 3 cm and the procedure was imaged with a FP and the MAF. To measure sensitivity to detect progress of the procedure by change in images of successive steps, an ROI was selected over the aneurysm location and pixel-value and histogram changes were calculated after each step. For the FP, after 4 steps, the H and P CCSs between successive steps were practically zero, indicating that there were no significant changes in the observed images. For the MAF, H and P CCSs were greater than zero even after 10 steps (30 cm GDC), indicating observable changes. Further, the proposed quantification method was applied for evaluation of seven patients imaged using the MAF, yielding similar results (H and P CCSs greater than zero after the last GDC deposition). The proposed metric indicates that the MAF can offer better guidance during such procedures.
doi:10.1117/12.911333
PMCID: PMC3419595  PMID: 22905313
Intracranial aneurysms; microangiographic fluoroscope; MAF; coil embolization; cross-correlation sensitivity
18.  Image Geometric Corrections for a New EMCCD-based Dual Modular X-ray Imager 
An EMCCD-based dual modular x-ray imager was recently designed and developed from the component level, providing a high dynamic range of 53 dB and an effective pixel size of 26 μm for angiography and fluoroscopy. The unique 2×1 array design efficiently increased the clinical field of view, and also can be readily expanded to an M×N array implementation. Due to the alignment mismatches between the EMCCD sensors and the fiber optic tapers in each module, the output images or video sequences result in a misaligned 2048×1024 digital display if uncorrected. In this paper, we present a method for correcting display registration using a custom-designed two layer printed circuit board. This board was designed with grid lines to serve as the calibration pattern, and provides an accurate reference and sufficient contrast to enable proper display registration. Results show an accurate and fine stitching of the two outputs from the two modules.
doi:10.1109/IEMBS.2011.6090726
PMCID: PMC3411313  PMID: 22254882
19.  Spatially Different, Real-Time Temporal Filtering and Dose Reduction for Dynamic Image Guidance during Neurovascular Interventions 
Conference Proceedings  2011;2011:6192-6195.
Fluoroscopic systems have excellent temporal resolution, but are relatively noisy. In this paper we present a recursive temporal filter with different weights (lag) for different user selected regions of interest (ROI) to assist the neurointerventionalist during an image guided catheter procedure. The filter has been implemented on a Graphics Processor (GPU), enabling its usage for fast frame rates such as during fluoroscopy.
We first demonstrate the use of this GPU-implemented rapid temporal filtering technique during an endovascular image guided intervention with normal fluoroscopy. Next we demonstrate its use in combination with ROI fluoroscopy where the exposure is substantially reduced in the peripheral region outside the ROI, which is then software-matched in brightness and filtered using the differential temporal filter. This enables patient dose savings along with improved image quality.
doi:10.1109/IEMBS.2011.6091529
PMCID: PMC3401071  PMID: 22255753
20.  New Variable Porosity Flow Diverter (VPOD) Stent Design for Treatment of Cerebrovascular Aneurysms 
Conference Proceedings  2011;2011:1105-1108.
Using flow diverting Stents for intracranial aneurysm repair has been an area of recent active research. While current commercial flow diverting stents rely on a dense mesh of braided coils for flow diversion, our group has been developing a method to selectively occlude the aneurysm neck, without endangering nearby perforator vessels. In this paper, we present a new method of fabricating the low porosity patch, a key element of such asymmetric vascular stents (AVS).
doi:10.1109/IEMBS.2011.6090258
PMCID: PMC3401081  PMID: 22254507
21.  Angiographic analysis of blood flow modification in cerebral aneurysm models with a new asymmetric stent 
We have built new asymmetric stents for minimally invasive endovascular treatment of cerebral aneurysms. Each asymmetric stent consists of a commercial stent with a micro-welded circular mesh patch. The blood flow modification in aneurysm-vessel phantoms due to these stents was evaluated using x-ray angiographic analysis. However, the density difference between the radiographic contrast and the blood gives rise to a gravity effect, which was evaluated using an initial optical dye-dilution experiment. For the radiographic evaluations, curved-vessel phantoms instead of simple straight side-wall aneurysm phantoms were used in the characterization of meshes/stents. Six phantoms (one untreated, one treated with a commercial stent, and four treated with different asymmetric stents) with similar morphologies were used for comparison. We calculated time-density curves of the aneurysm region and then calculated the peak value (Pk) and washout rate (1/τ) after analytical curve fitting. Flow patterns in the angiograms showed reduction of vortex flow and slow washout in the dense mesh patch treated aneurysms. The meshes reduced Pk down to 21% and 1/τ down to 12% of the values for the untreated case. In summary, new asymmetric stents were constructed and their evaluation demonstrates that they may be useful in the endovascular treatment of aneurysms.
doi:10.1117/12.535347
PMCID: PMC3163448  PMID: 21886414
aneurysm; cerebral aneurysm; angiography; time-density; blood flow; flow evaluation; flow modification; stent; asymmetric stent; interventional neuroradiology
22.  Study of Stent Deployment Mechanics Using a High-Resolution X-ray Imaging Detector 
To treat or prevent some of the 795,000 annual strokes in the U.S., self-expanding endo-vascular stents deployed under fluoroscopic image guidance are often used. Neuro-interventionalists need to know the deployment behavior of each stent in order to place them in the correct position. Using the Micro-Angiographic Fluoroscope (MAF) which has about 3 times higher resolution than commercially available flat panel detectors (FPD) we studied the deployment mechanics of two of the most important commercially available nitinol stents: the Pipeline embolization device (EV3), and the Enterprise stent (Codman). The Pipeline stent's length extends to about 3 times that of its deployed length when it is contained inside a catheter. From the high-resolution images with the MAF we found that upon the sudden release of the distal end of the Pipeline from a helical wire cap, the stent expands radially but retracts to about 30% (larger than for patient deployments) of its length. When released from the catheter proximally, it retracts additionally about 50% contributing to large uncertainty in the final deployed location. In contrast, the MAF images clearly show that the Enterprise stent self expands with minimal length retraction during deployment from its catheter and can be retrieved and repositioned until the proximal markers are released from clasping structures on its guide-wire thus enabling more accurate placement at the center of an aneurysm or stenosis. The high-resolution imaging demonstrated in this study should help neurointerventionalists understand and control endovascular stent deployment mechanisms and hence perform more precise treatments.
doi:10.1117/12.877710
PMCID: PMC3144509  PMID: 21804747
Neuro-imaging; Neuro-endovascular image guided interventions; Stent; EV3; Enterprise Stent; Pipeline Stent
23.  Evaluation and Comparison of High-Resolution (HR) and High-Light (HL) Phosphors in the Micro-Angiographic Fluoroscope (MAF) using Generalized Linear Systems Analyses (GMTF, GDQE) that include the Effect of Scatter, Magnification and Detector Characteristics 
In this study, we evaluated the imaging characteristics of the high-resolution, high-sensitivity micro-angiographic fluoroscope (MAF) with 35-micron pixel-pitch when used with different commercially-available 300 micron thick phosphors: the high resolution (HR) and high light (HL) from Hamamatsu. The purpose of this evaluation was to see if the HL phosphor with its higher screen efficiency could be replaced with the HR phosphor to achieve improved resolution without an increase in noise resulting from the HR's decreased light-photon yield. We designated the detectors MAF-HR and MAF-HL and compared them with a standard flat panel detector (FPD) (194 micron pixel pitch and 600 micron thick CsI(Tl)). For this comparison, we used the generalized linear-system metrics of GMTF, GNNPS and GDQE which are more realistic measures of total system performance since they include the effect of scattered radiation, focal spot distribution, and geometric un-sharpness. Magnifications (1.05-1.15) and scatter fractions (0.28 and 0.33) characteristic of a standard head phantom were used. The MAF-HR performed significantly better than the MAF-HL at high spatial frequencies. The ratio of GMTF and GDQE of the MAF-HR compared to the MAF-HL at 3(6) cycles/mm was 1.45(2.42) and 1.23(2.89), respectively. Despite significant degradation by inclusion of scatter and object magnification, both MAF-HR and MAF-HL provide superior performance over the FPD at higher spatial frequencies with similar performance up to the FPD's Nyquist frequency of 2.5 cycles/mm. Both substantially higher resolution and improved GDQE can be achieved with the MAF using the HR phosphor instead of the HL phosphor.
doi:10.1117/12.877714
PMCID: PMC3134255  PMID: 21760698
MTF; DQE; GMTF; GDQE; NPS; GNNPS; MAF; FPD; MAF-HR; MAF-HL
24.  Angiographic imaging evaluation of patient-specific bifurcation-aneurysm phantom treatment with pre-shaped, self-expanding, flow-diverting stents: feasibility study 
Aneurysm treatment using flow diversion could become the treatment of choice in the near future. While such side-wall aneurysm treatments have been studied in many publications and even implemented in selected clinical cases, bifurcation aneurysm treatment using flow diversion has not been addressed in detail. Using angiographic imaging, we evaluated treatment of such cases with several stent designs using patient-specific aneurysm phantoms. The aim is to find a way under fluoroscopic image guidance to place a low-porosity material across the aneurysm orifice while keeping the vessel blockage minimal. Three pre-shaped self-expanding stent designs were developed: the first design uses a middle-flap wing stent, the second uses a two-tapered-wing-ended stent, and the third is a slight modification of the first design in which the middle-flap is anchored tightly against the aneurysm using a standard stent. Treatment effects on flow were evaluated using high-speed angiography (30 fps) and compared with the untreated aneurysm. Contrast inflow was reduced in all the cases: 25% for Type 1, 63% for type 2 and 88% for Type 3. The first and the second stent design allowed some but substantially-reduced flow inside the aneurysm neck as indicated by the time-density curves. The third stent design eliminated almost all flow directed at the aneurysm dome, and only partial filling was observed. In the same time Type 1 and 3 delayed the inflow in the branches up to 100% compared to the untreated phantom. The results are quite promising and warrant future study.
doi:10.1117/12.877675
PMCID: PMC3134257  PMID: 21760699
Flow Diverter; Asymmetric Vascular Stent; Time Density Curves; Intracranial Bifurcation Aneurysm; Patient Specific Phantoms; Branch Jailing
25.  Measuring the presampled MTF from a reduced number of flat-field images using the Noise Response (NR) method 
We evaluate a new method for measuring the presampled modulation transfer function (MTF) using the noise power spectrum (NPS) obtained from a few flat-field images acquired at one exposure level. The NPS is the sum of structure, quantum, and additive instrumentation noise, which are proportional to exposure squared, exposure, and a constant, respectively, with the spatial-frequency dependence of the quantum noise depending partly on the detector MTF. Cascaded linear-systems theory was used to derive an exact and generic relationship that was used to isolate noise terms and enable determination of the MTF directly from the noise response, thereby circumventing the need for precision test objects (slit, edge, etc.) as required by standard techniques. Isolation of the quantum NPS by fitting the total NPS versus exposure obtained using 30 flat-field images each at six or more different exposure levels with a linear regression provides highly accurate MTFs. A subset of these images from indirect digital detectors was used to investigate the accuracy of measuring the MTF from 30 or fewer flat-field images obtained at a single exposure level. Analyzing as few as two images acquired at a single exposure resulted in no observable systematic error. Increasing the number of images analyzed resulted in an increase in accuracy. Fifteen images provided comparable accuracy with the most rigorous slope approach, with less than 5% variability, suggesting additional image acquisitions may be unnecessary. Reducing the number of images acquired for the noise response method further simplifies and facilitates routine MTF measurements.
doi:10.1117/12.877890
PMCID: PMC3127228  PMID: 21731401
MTF; two-dimensional MTF; NPS; detector; performance; flat panel detector; SSXII; image quality; quality assurance

Results 1-25 (57)