PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (53)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
Document Types
1.  ER–Mitochondrial Calcium Flow Underlies Vulnerability of Mechanosensory Hair Cells to Damage 
The Journal of Neuroscience  2014;34(29):9703-9719.
Mechanosensory hair cells are vulnerable to environmental insult, resulting in hearing and balance disorders. We demonstrate that directional compartmental flow of intracellular Ca2+ underlies death in zebrafish lateral line hair cells after exposure to aminoglycoside antibiotics, a well characterized hair cell toxin. Ca2+ is mobilized from the ER and transferred to mitochondria via IP3 channels with little cytoplasmic leakage. Pharmacological agents that shunt ER-derived Ca2+ directly to cytoplasm mitigate toxicity, indicating that high cytoplasmic Ca2+ levels alone are not cytotoxic. Inhibition of the mitochondrial transition pore sensitizes hair cells to the toxic effects of aminoglycosides, contrasting with current models of excitotoxicity. Hair cells display efficient ER–mitochondrial Ca2+ flow, suggesting that tight coupling of these organelles drives mitochondrial activity under physiological conditions at the cost of increased susceptibility to toxins.
doi:10.1523/JNEUROSCI.0281-14.2014
PMCID: PMC4099547  PMID: 25031409
lateral line; zebrafish
2.  A Brief History of Hair Cell Regeneration Research and Speculations on the Future 
Hearing research  2013;297:42-51.
Millions of people worldwide suffer from hearing and balance disorders caused by loss of the sensory hair cells that convert sound vibrations and head movements into electrical signals that are conveyed to the brain. In mammals, the great majority of hair cells are produced during embryogenesis. Hair cells that are lost after birth are virtually irreplaceable, leading to permanent disability. Other vertebrates, such as fish and amphibians produce hair cells throughout life. However, hair cell replacement after damage to the mature inner ear was either not investigated or assumed to be impossible until studies in the late 1980s proved this to be false. Adult birds were shown to regenerate lost hair cells in the auditory sensory epithelium after noise- and ototoxic drug-induced damage. Since then, the field of hair cell regeneration has continued to investigate the capacity of the auditory and vestibular epithelia in vertebrates (fishes, birds, reptiles, and mammals) to regenerate hair cells and to recover function, the molecular mechanisms governing these regenerative capabilities, and the prospect of designing biologically-based treatments for hearing loss and balance disorders. Here, we review the major findings of the field during the past 25 years and speculate how future inner ear repair may one day be achieved.
doi:10.1016/j.heares.2012.12.014
PMCID: PMC3657556  PMID: 23321648
hair cell regeneration; historical review; proliferation; transdifferentiation; sensory epithelia; hair cells; supporting cells
3.  A Simple Method for Multi-Day Imaging of Slice Cultures 
The organotypic slice culture (Stoppini et al., 1991) has become the method of choice to answer a variety of questions in neuroscience. For many experiments however, it would be beneficial to image or manipulate a slice culture repeatedly, for example over the course of many days.
We prepared organotypic slice cultures of the auditory brainstem of P3 and P4 mice and kept them in vitro for up to 4 weeks. Single cells in the auditory brainstem were transfected with plasmids expressing fluorescent proteins by way of electroporation (Haas et al., 2001). The culture was then placed in a chamber perfused with oxygenated ACSF and the labeled cell imaged with an inverted wide-field microscope repeatedly for multiple days, recording several time-points per day, before returning the slice to the incubator.
We describe a simple method to image a slice culture preparation over to the course of multiple days and over many continuous hours, without noticeable damage to the tissue or photobleaching. Our method employs a simple, inexpensive custom-built insulator constructed around the microscope to maintain controlled temperature, and uses a perfusion chamber as used for in vitro slice recordings.
doi:10.1002/jemt.20750
PMCID: PMC2797827  PMID: 19565635
slice culture; single-cell gene electroporation; multi-day imaging
4.  Transgenic Quail as a Model for Research in the Avian Nervous System – A Comparative Study of the Auditory Brainstem 
Research performed on transgenic animals has led to numerous advances in biological research. However, using traditional retroviral methods to generate transgenic avian research models has proven problematic. As a result, experiments aimed at genetic manipulations on birds remained difficult for this popular research tool. Recently, lentiviral methods have enabled production of transgenic birds, including a transgenic Japanese quail (Coturnix coturnix japonica) line showing neuronal-specificity and stable expression of eGFP across generations (termed here as GFP quail). To test whether the GFP quail may serve as a viable alternative to the popular chicken model system, with the additional benefit of gene manipulation, we compared the development, organization, structure and function of a specific neuronal circuit in chicken (Gallus gallus domesticus) to that of the GFP quail. This study focuses on a well-defined avian brain region, the principal nuclei of the sound localization circuit in the auditory brainstem, nucleus magnocellularis (NM) and nucleus laminaris (NL). Our results demonstrate that structural and functional properties of NM and NL neurons in the GFP quail, as well as their dynamic properties in response to changes in the environment, are nearly identical to those in chickens. These similarities demonstrate that the GFP quail, as well as other transgenic quail lines, can serve as an attractive avian model system, with the advantage of being able to build on the wealth of information already available from the chicken.
doi:10.1002/cne.23187
PMCID: PMC3488602  PMID: 22806400
transgenic quail; auditory brainstem
5.  Disruption of intracellular calcium regulation is integral to aminoglycoside-induced hair cell death 
Intracellular Ca2+ is a key regulator of life or death decisions in cultured neurons and sensory cells. The role of Ca2+ in these processes is less clear in vivo, as the location of these cells often impedes visualization of intracellular Ca2+ dynamics. We generated transgenic zebrafish lines that express the genetically encoded Ca2+ indicator GCaMP in mechanosensory hair cells of the lateral line. These lines allow us to monitor intracellular Ca2+ dynamics in real time during aminoglycoside-induced hair cell death. Following exposure of live larvae to aminoglycosides, dying hair cells undergo a transient increase in intracellular Ca2+ that occurs shortly after mitochondrial membrane potential collapse. Inhibition of intracellular Ca2+ elevation through either caged chelators or pharmacological inhibitors of Ca2+ effectors mitigates toxic effects of aminoglycoside exposure. Conversely, artificial elevation of intracellular Ca2+ by caged Ca2+ release agents sensitizes hair cells to the toxic effects of aminoglycosides. These data suggest that alterations in intracellular Ca2+ homeostasis play an essential role in aminoglycoside-induced hair cell death, and indicate several potential therapeutic targets to stem ototoxicity.
doi:10.1523/JNEUROSCI.4559-12.2013
PMCID: PMC3703319  PMID: 23616556
6.  Estradiol selectively enhances auditory function in avian forebrain neurons 
Sex steroids modulate vertebrate sensory processing, but the impact of circulating hormone levels on forebrain function remains unclear. We tested the hypothesis that circulating sex steroids modulate single-unit responses in the avian telencephalic auditory nucleus, field L. We mimicked breeding or non-breeding conditions by manipulating plasma 17β-estradiol levels in wild-caught female Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii). Extracellular responses of single neurons to tones and conspecific songs presented over a range of intensities revealed that estradiol selectively enhanced auditory function in cells that exhibited monotonic rate-level functions to pure tones. In these cells, estradiol treatment increased spontaneous and maximum evoked firing rates, increased pure tone response strengths and sensitivity, and expanded the range of intensities over which conspecific song stimuli elicited significant responses. Estradiol did not significantly alter the sensitivity or dynamic ranges of cells that exhibited non-monotonic rate-level functions. Notably, there was a robust correlation between plasma estradiol concentrations in individual birds and physiological response properties in monotonic, but not non-monotonic neurons. These findings demonstrate that functionally distinct classes of anatomically overlapping forebrain neurons are differentially regulated by sex steroid hormones in a dose-dependent manner.
doi:10.1523/JNEUROSCI.3938-12.2012
PMCID: PMC3532894  PMID: 23223283
7.  In vivo Reversible Regulation of Dendritic Patterning by Afferent Input in Bipolar Auditory Neurons 
Afferent input regulates neuronal dendritic patterning locally and globally through distinct mechanisms. To begin to understand these mechanisms, we differentially manipulate afferent input in vivo and assess effects on dendritic patterning of individual neurons in chicken nucleus laminaris (NL). Dendrites of NL neurons segregate into dorsal and ventral domains, receiving excitatory input from the ipsilateral and contralateral ears, respectively, via nucleus magnocellularis (NM). Blocking action potentials from one ear, by either cochlea removal or temporary treatment with tetrodotoxin (TTX), leads to rapid and significant retraction of affected NL dendrites (dorsal ipsilaterally and ventral contralaterally) within 8h as compared to the other dendrites of the same neurons. The degree of retraction is comparable to that induced by direct deafferentation resulting from transection of NM axons. Importantly, when inner ear activity is allowed to recover from TTX treatments, retracted NL dendrites regrow to their normal length within 48h. The retraction and growth involve elimination of terminal branches and addition of new branches. Examination of changes in NL dendrites at 96h following unilateral cochlear removal, a manipulation that induces cell loss in NM and persistent blockage of afferent excitatory action potentials, reveals a significant correlation between cell death in the ipsilateral NM and the degree of dendritic retraction in NL. These results demonstrate that presynaptic action potentials rapidly and reversibly regulate dendritic patterning of postsynaptic neurons in a compartment specific manner, while long-term dendritic maintenance may be regulated in a way that is correlated with the presence of silent presynaptic appositions.
doi:10.1523/JNEUROSCI.1737-12.2012
PMCID: PMC3435435  PMID: 22895732
8.  Differential Conduction Velocity Regulation in Ipsilateral and Contralateral Collaterals Innervating Brainstem Coincidence Detector Neurons 
The Journal of Neuroscience  2014;34(14):4914-4919.
Information processing in the brain relies on precise timing of signal propagation. The highly conserved neuronal network for computing spatial representations of acoustic signals resolves microsecond timing of sounds processed by the two ears. As such, it provides an excellent model for understanding how precise temporal regulation of neuronal signals is achieved and maintained. The well described avian and mammalian brainstem circuit for computation of interaural time differences is composed of monaural cells in the cochlear nucleus (CN; nucleus magnocellularis in birds) projecting to binaurally innervated coincidence detection neurons in the medial superior olivary nucleus (MSO) in mammals or nucleus laminaris (NL) in birds. Individual axons from CN neurons issue a single axon that bifurcates into an ipsilateral branch and a contralateral branch that innervate segregated dendritic regions of the MSO/NL coincidence detector neurons. We measured conduction velocities of the ipsilateral and contralateral branches of these bifurcating axon collaterals in the chicken by antidromic stimulation of two sites along each branch and whole-cell recordings in the parent neurons. At the end of each experiment, the individual CN neuron and its axon collaterals were filled with dye. We show that the two collaterals of a single axon adjust the conduction velocities individually to achieve the specific conduction velocities essential for precise temporal integration of information from the two ears, as required for sound localization. More generally, these results suggest that individual axonal segments in the CNS interact locally with surrounding neural structures to determine conduction velocity.
doi:10.1523/JNEUROSCI.5460-13.2014
PMCID: PMC3972718  PMID: 24695710
conduction velocity regulation; myelin plasticity; sound localization
9.  RELATIVE INPUT STRENGTH RAPIDLY REGULATES DENDRITIC STRUCTURE of CHICK auditory brainstem NEURONS 
The Journal of comparative neurology  2011;519(14):2838-2851.
Competition between presynaptic inputs has been suggested to shape dendritic form. This hypothesis can be directly tested on bitufted, auditory neurons in chicken nucleus laminaris (NL). Each NL neuron contains two relatively symmetrical dendritic arbors; the dorsal dendrite receives excitatory glutamatergic input from the ipsilateral ear and the ventral dendrites receive corresponding input from the contralateral ear. To assess the effect of relative synaptic strength on NL dendrites, we used single cell electroporation, electrophysiology and live, two-photon laser scanning microscopy to manipulate both the amount and the balance of synaptic input to the two matching sets of dendrites. With simultaneous activation, both sets of dendrites changed together, either growing or retracting over the imaging period. In contrast, stimulation of only one set of dendrites (either dorsal or ventral) resulted in the unstimulated dendrites losing total dendritic branch length, while the stimulated dendrites exhibited a tendency to grow. In this system, balanced input leads to balanced changes in the two sets of dendrites while imbalanced input results in differential changes. Time-lapse imaging revealed that NL dendrites respond to differential stimulation by first decreasing the size of their unstimulated dendrites, and then increasing the size of their stimulated dendrites. This result suggests that the relative activity of presynaptic neurons dynamically controls dendritic structure in NL, and that dendritic real estate can rapidly be shifted from inactive inputs to active inputs.
doi:10.1002/cne.22656
PMCID: PMC3196591  PMID: 21500196
dendrites; activity; competition; auditory; time-lapse imaging
10.  Bax, Bcl2, and p53 Differentially Regulate Neomycin- and Gentamicin-Induced Hair Cell Death in the Zebrafish Lateral Line 
Sensorineural hearing loss is a normal consequence of aging and results from a variety of extrinsic challenges such as excessive noise exposure and certain therapeutic drugs, including the aminoglycoside antibiotics. The proximal cause of hearing loss is often death of inner ear hair cells. The signaling pathways necessary for hair cell death are not fully understood and may be specific for each type of insult. In the lateral line, the closely related aminoglycoside antibiotics neomycin and gentamicin appear to kill hair cells by activating a partially overlapping suite of cell death pathways. The lateral line is a system of hair cell-containing sense organs found on the head and body of aquatic vertebrates. In the present study, we use a combination of pharmacologic and genetic manipulations to assess the contributions of p53, Bax, and Bcl2 in the death of zebrafish lateral line hair cells. Bax inhibition significantly protects hair cells from neomycin but not from gentamicin toxicity. Conversely, transgenic overexpression of Bcl2 attenuates hair cell death due to gentamicin but not neomycin, suggesting a complex interplay of pro-death and pro-survival proteins in drug-treated hair cells. p53 inhibition protects hair cells from damage due to either aminoglycoside, with more robust protection seen against gentamicin. Further experiments evaluating p53 suggest that inhibition of mitochondrial-specific p53 activity confers significant hair cell protection from either aminoglycoside. These results suggest a role for mitochondrial p53 activity in promoting hair cell death due to aminoglycosides, likely upstream of Bax and Bcl2.
doi:10.1007/s10162-013-0404-1
PMCID: PMC3767879  PMID: 23821348
aminoglycoside; ototoxicity; neuromast; hearing loss; Danio rerio
11.  Identification of Modulators of Hair Cell Regeneratin in the Zebrafish Lateral Line 
The Journal of Neuroscience  2012;32(10):3516-3528.
The external location of the zebrafish lateral line makes it a powerful model for studying mechanosensory hair cell regeneration. We have developed a chemical screen to identify FDA-approved drugs and biologically active compounds that modulate hair cell regeneration in zebrafish. Of the 1,680 compounds evaluated, we identified 2 enhancers and 6 inhibitors of regeneration. The two enhancers, dexamethasone and prednisolone, are synthetic glucocorticoids that potentiated hair cell numbers during regeneration and also induced hair cell addition in the absence of damage. BrdU analysis confirmed that the extra hair cells arose from mitotic activity. We found that dexamethasone and prednisolone, like other glucocorticoids, suppress zebrafish caudal fin regeneration, indicating that hair cell regeneration occurs by a distinctly different process. Further analyses of the regeneration inhibitors revealed that two of the six, flubendazole and topotecan, significantly suppress hair cell regeneration by preventing proliferation of hair cell precursors. Flubendazole halted support cell division in M-phase, possibly by interfering with normal microtubule activity. Topotecan, a topoisomerase inhibitor, killed both hair cells and proliferating hair cell precursors. A third inhibitor, fulvestrant, moderately delays hair cell regeneration by reducing support cell proliferation. Our observation that hair cells do not regenerate when support cell proliferation is impeded confirms previous observations that cell division is the primary route for hair cell regeneration after neomycin treatment in zebrafish.
doi:10.1523/JNEUROSCI.3905-11.2012
PMCID: PMC3318954  PMID: 22399774
12.  Dynamic Spike Thresholds during Synaptic Integration Preserve and Enhance Temporal Response Properties in the Avian Cochlear Nucleus 
The Journal of Neuroscience  2010;30(36):12063-12074.
Neurons of the cochlear nuclei are anatomically and physiologically specialized to optimally encode temporal and spectral information about sound stimuli, in part for binaural auditory processing. The avian cochlear nucleus magnocellularis (NM) integrates excitatory eighth nerve inputs and depolarizing GABAergic inhibition such that temporal fidelity is enhanced across the synapse. The biophysical mechanisms of this depolarizing inhibition, and its role in temporal processing, are not fully understood. We used whole-cell electro-physiology and computational modeling to examine how subthreshold excitatory inputs are integrated and how depolarizing IPSPs affect spike thresholds and synaptic integration by chick NM neurons. We found that both depolarizing inhibition and subthreshold excitatory inputs cause voltage threshold accommodation, nonlinear temporal summation, and shunting. Inhibition caused such large changes in threshold that subthreshold excitatory inputs were followed by a refractory period. We hypothesize that these large shifts in threshold eliminate spikes to asynchronous inputs, providing a mechanism for the enhanced temporal fidelity seen across the eighth nerve/cochlear nucleus synapse. Thus, depolarizing inhibition and threshold shifting hone the temporal response properties of this system so as to enhance the temporal fidelity that is essential for auditory perception.
doi:10.1523/JNEUROSCI.1840-10.2010
PMCID: PMC3390778  PMID: 20826669
13.  Topography and Morphology of the Inhibitory Projection From Superior Olivary Nucleus to Nucleus Laminaris in Chickens (Gallus gallus) 
The avian nucleus laminaris (NL) is involved in computation of interaural time differences (ITDs) that encode the azimuthal position of a sound source. Neurons in NL are bipolar, with dorsal and ventral dendritic arbors receiving input from separate ears. NL neurons act as coincidence detectors that respond maximally when input from each ear arrives at the two dendritic arbors simultaneously. Computational and physiological studies demonstrated that the sensitivity of NL neurons to coincident inputs is modulated by an inhibitory feedback circuit via the superior olivary nucleus (SON). To understand the mechanism of this modulation, the topography of the projection from SON to NL was mapped, and the morphology of the axon terminals of SON neurons in NL was examined in chickens (Gallus gallus). In vivo injection of AlexaFluor 568 dextran amine into SON demonstrated a coarse topographic projection from SON to NL. Retrogradely labeled neurons in NL were located within the zone of anterogradely labeled terminals, suggesting a reciprocal projection from SON to NL. In vivo extracellular physiological recording further demonstrated that this topography is consistent with tonotopic maps in SON and NL. In addition, three-dimensional reconstruction of single SON axon branches within NL revealed that individual SON neurons innervate a large area of NL and terminate on both dorsal and ventral dendritic arbors of NL neurons. The organization of the projection from SON to NL supports its proposed functions of controlling the overall activity level of NL and enhancing the specificity of frequency mapping and ITD detection.
doi:10.1002/cne.22523
PMCID: PMC3299086  PMID: 21165979
auditory brainstem; axonal projection; γ-aminobutyric acid (GABA); interaural time difference (ITD); tonotopic organization
14.  Response of mechanosensory hair cells of the zebrafish lateral line to aminoglycosides reveals distinct cell death pathways 
Hearing research  2009;253(1-2):32-41.
We report a series of experiments investigating the kinetics of hair cell loss in lateral line neuromasts of zebrafish larvae following exposure to aminoglycoside antibiotics. Comparisons of the rate of hair cell loss and the differential effects of acute versus chronic exposure to gentamicin and neomycin revealed markedly different results. Neomycin induced rapid and dramatic concentration-dependent hair cell loss that is essentially complete within 90 minutes, regardless of concentration or exposure time. Gentamicin induced loss of half of the hair cells within 90 minutes and substantial additional loss, which was prolonged and cumulative over exposure times up to at least 24 hr. Small molecules and genetic mutations that inhibit neomycin-induced hair cell loss were ineffective against prolonged gentamicin exposure supporting the hypothesis that these two drugs are revealing at least two cellular pathways. The mechanosensory channel blocker amiloride blocked both neomycin and gentamicin-induced hair cell death acutely and chronically indicating that these aminoglycosides share a common entry route. Further tests with additional aminoglycosides revealed a spectrum of differential responses to acute and chronic exposure. The distinctions between the times of action of these aminoglycosides indicate that these drugs induce multiple cell death pathways.
doi:10.1016/j.heares.2009.03.001
PMCID: PMC3167481  PMID: 19285126
ototoxicity; aminoglycoside; hair cell; mechanosensory; lateral line; zebrafish; hair cell
15.  Peripheral auditory processing changes seasonally in Gambel’s white-crowned sparrow 
Song in oscine birds is a learned behavior that plays important roles in breeding. Pronounced seasonal differences in song behavior, and in the morphology and physiology of the neural circuit underlying song production are well documented in many songbird species. Androgenic and estrogenic hormones largely mediate these seasonal changes. While much work has focused on the hormonal mechanisms underlying seasonal plasticity in songbird vocal production, relatively less work has investigated seasonal and hormonal effects on songbird auditory processing, particularly at a peripheral level. We addressed this issue in Gambel’s white-crowned sparrow (Zonotrichia leucophrys gambelii), a highly seasonal breeder. Photoperiod and hormone levels were manipulated in the laboratory to simulate natural breeding and non-breeding conditions. Peripheral auditory function was assessed by measuring the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAEs) of males and females in both conditions. Birds exposed to breeding-like conditions demonstrated elevated thresholds and prolonged peak latencies compared with birds housed under non-breeding-like conditions. There were no changes in DPOAEs, however, which indicates that the seasonal differences in ABRs do not arise from changes in hair cell function. These results suggest that seasons and hormones impact auditory processing as well as vocal production in wild songbirds.
doi:10.1007/s00359-010-0545-1
PMCID: PMC2909381  PMID: 20563817
songbird; hormone; season; auditory; ABR
16.  Pre-target axon sorting in the avian auditory brainstem 
The Journal of comparative neurology  2013;521(10):2310-2320.
Topographic organization of neurons is a hallmark of brain structure. The establishment of the connections between topographically organized brain regions has attracted much experimental attention and it is widely accepted that molecular cues guide outgrowing axons to their targets in order to construct topographic maps. In a number of systems afferent axons are organized topographically along their trajectory as well and it has been suggested that this pre-target sorting contributes to map formation. Neurons in auditory regions of the brain are arranged according to their best frequency (BF), the sound frequency they respond to optimally. This BF changes predictably with position along the so-called tonotopic axis. In the avian auditory brainstem, the tonotopic organization of the second- and third-order auditory neurons in nucleus magnocellularis (NM) and nucleus laminaris (NL) has been well described. In this study we examine whether the decussating NM axons forming the crossed dorsal cochlear tract (XDCT) and innervating the contralateral NL are arranged in a systematic manner. We electroporated dye into cells in different frequency regions of NM to anterogradely label their axons in the XDCT. The placement of dye in NM was compared to the location of labeled axons in XDCT. Our results show that NM axons in XDCT are organized in a precise tonotopic manner along the rostrocaudal axis, spanning over the entire rostrocaudal extent of both the origin and target nuclei. We propose that in the avian auditory brainstem, this pre-target axon sorting contributes to tonotopic map formation in NL.
doi:10.1002/cne.23287
PMCID: PMC3619017  PMID: 23239056
axon topography; pre-target axon sorting; auditory system; tonotopic organization; sound localization
17.  The zebrafish merovingian mutant reveals a role for pH regulation in hair cell toxicity and function 
Disease Models & Mechanisms  2014;7(7):847-856.
Control of the extracellular environment of inner ear hair cells by ionic transporters is crucial for hair cell function. In addition to inner ear hair cells, aquatic vertebrates have hair cells on the surface of their body in the lateral line system. The ionic environment of these cells also appears to be regulated, although the mechanisms of this regulation are less understood than those of the mammalian inner ear. We identified the merovingian mutant through genetic screening in zebrafish for genes involved in drug-induced hair cell death. Mutants show complete resistance to neomycin-induced hair cell death and partial resistance to cisplatin-induced hair cell death. This resistance is probably due to impaired drug uptake as a result of reduced mechanotransduction ability, suggesting that the mutants have defects in hair cell function independent of drug treatment. Through genetic mapping we found that merovingian mutants contain a mutation in the transcription factor gcm2. This gene is important for the production of ionocytes, which are cells crucial for whole body pH regulation in fish. We found that merovingian mutants showed an acidified extracellular environment in the vicinity of both inner ear and lateral line hair cells. We believe that this acidified extracellular environment is responsible for the defects seen in hair cells of merovingian mutants, and that these mutants would serve as a valuable model for further study of the role of pH in hair cell function.
doi:10.1242/dmm.016576
PMCID: PMC4073274  PMID: 24973752
Aminoglycosides; Cisplatin; Hair cells; H+-ATPase; Ototoxicity; pH
18.  Mechanisms for Adjusting Interaural Time Differences to Achieve Binaural Coincidence Detection 
Understanding binaural perception requires detailed analyses of the neural circuitry responsible for the computation of interaural time differences (ITDs). In the avian brainstem, this circuit consists of internal axonal delay lines innervating an array of coincidence detector neurons that encode external ITDs. Nucleus magnocellularis (NM) neurons project to the dorsal dendritic field of the ipsilateral nucleus laminaris (NL) and to the ventral field of the contralateral NL. Contralateral-projecting axons form a delay line system along a band of NL neurons. Binaural acoustic signals in the form of phase-locked action potentials from NM cells arrive at NL and establish a topographic map of sound source location along the azimuth. These pathways are assumed to represent a circuit similar to the Jeffress model of sound localization, establishing a place code along an isofrequency contour of NL. Three-dimensional measurements of axon lengths reveal major discrepancies with the current model; the temporal offset based on conduction length alone makes encoding of physiological ITDs impossible. However, axon diameter and distances between Nodes of Ranvier also influence signal propagation times along an axon. Our measurements of these parameters reveal that diameter and internode distance can compensate for the temporal offset inferred from axon lengths alone. Together with other recent studies these unexpected results should inspire new thinking on the cellular biology, evolution and plasticity of the circuitry underlying low frequency sound localization in both birds and mammals.
doi:10.1523/JNEUROSCI.3464-09.2010
PMCID: PMC2822993  PMID: 20053889
Sound; Localization; Auditory; Brainstem; Axon; Conduction; Velocity
19.  Compartment-Specific Regulation of Plasma Membrane Calcium ATPase Type 2 in the Chick Auditory Brainstem 
Calcium signaling plays a role in synaptic regulation of dendritic structure, usually on the time scale of hours or days. Here we use immunocytochemistry to examine changes in expression of the plasma membrane calcium ATPase type 2 (PMCA2), a high-affinity calcium efflux protein, in the chick nucleus laminaris (NL) following manipulations of synaptic inputs. Dendrites of NL neurons segregate into dorsal and ventral domains, receiving excitatory input from the ipsilateral and contralateral ears, respectively, via nucleus magnocellularis (NM). Deprivation of the contralateral projection from NM to NL leads to rapid retraction of ventral, but not the dorsal, dendrites of NL neurons. Immunocytochemistry revealed symmetric distribution of PMCA2 in two neuropil regions of normally innervated NL. Electron microscopy confirmed that PMCA2 localizes in both NM terminals and NL dendrites. As early as 30 minutes following transection of the contralateral projection from NM to NL or unilateral cochlea removal, significant decreases in PMCA2 immunoreactivity were seen in the deprived neuropil of NL compared to the other neuropil which continued to receive normal input. The rapid decrease correlated with reductions in the immunoreactivity for the microtubule-associated protein 2, which affects cytoskeleton stabilization. These results suggest that PMCA2 is regulated independently in ventral and dorsal NL dendrites and/or their inputs from NM in a way that is correlated with presynaptic activity. This provides a potential mechanism by which deprivation can change calcium transport that, in turn, may be important for rapid, compartment-specific dendritic remodeling.
doi:10.1002/cne.22045
PMCID: PMC2702515  PMID: 19365819
calcium homeostasis; afferent regulation; dendritic remodeling; activity-dependency; nucleus laminaris
20.  Tonotopic Organization of the Superior Olivary Nucleus in the Chicken Auditory Brainstem 
The Journal of comparative neurology  2012;520(7):1493-1508.
Topographic maps are salient features of neuronal organization in sensory systems. Inhibitory components of neuronal circuitry are often embedded within this organization, making them difficult to isolate experimentally. The auditory system provides opportunities to study the topographic organization of inhibitory long-range projection nuclei, such as the superior olivary nucleus (SON). We analyzed the topographic organization of response features of neurons in the SON of chickens. Quantitative methods were developed to assess and communicate this organization. These analyses led to three main conclusions: 1) sound frequency is linearly arranged from dorsal (low frequencies) to ventral (high frequencies) in SON; 2) this tonotopic organization is less precise than the organization of the excitatory nuclei in the chicken auditory brainstem; and 3) neurons with different response patterns to pure tone stimuli are interspersed throughout the SON and show similar tonotopic organizations. This work provides a predictive model to determine the optimal stimulus frequency for a neuron from its spatial location in the SON.
doi:10.1002/cne.22807
PMCID: PMC4033909  PMID: 22102107
auditory; inhibitory; superior olivary nucleus; three-dimensional tonotopic organization
21.  Cisplatin-Induced Hair Cell Death Requires STAT1 and is Attenuated by Epigallocatechin Gallate 
Cisplatin is a chemotherapy drug that frequently causes auditory impairment due to the death of mechanosensory hair cells. Cisplatin ototoxicity may result from oxidative stress, DNA damage, and inflammatory cytokines. The transcription factor STAT1, an important mediator of cell death, can regulate all of these processes in other cell types. We used cultured utricles from mature Swiss Webster mice to investigate the role of STAT1 in cisplatin-induced hair cell death. We show that STAT1 phosphorylation is an early event in both hair cells and support cells following exposure of utricles to cisplatin. STAT1 phosphorylation peaked after 4 hours of cisplatin exposure and returned to control levels by 8 hours of exposure. The STAT1 inhibitor epigallocatechin gallate (EGCG) attenuated STAT1 phosphorylation in cisplatin-treated utricles and resulted in concentration-dependent increases in hair cell survival at 24 hours post-exposure. Furthermore, we show that utricular hair cells from STAT1-deficient mice are resistant to cisplatin toxicity. EGCG failed to provide additional protection from cisplatin in STAT1-deficient mice, further supporting the hypothesis that the protective effects of EGCG are due to its inhibition of STAT1. Treatment with IFN-γ, which also causes STAT1 activation, also induced hair cell death in wildtype but not STAT1-deficient mice. These results show that STAT1 is required for maximal cisplatin-induced hair cell death in the mouse utricle and suggest that treatment with EGCG may be a useful strategy for prevention of cisplatin ototoxicity.
doi:10.1523/JNEUROSCI.5842-08.2009
PMCID: PMC2707781  PMID: 19321781
vestibular; inflammation; stress; transcription factor; cell fate; hair cells; toxicity
22.  Rapid Regulation of Microtubule-Associated Proteins 2 (MAP2) in Dendrites of N. Laminaris of the Chick Following Deprivation of Afferent Activity 
Neuroscience  2008;154(1):381-389.
Differential innervation of segregated dendritic domains in the chick nucleus laminaris (NL), composed of third-order auditory neurons, provides a unique model to study synaptic regulation of dendritic structure. Altering the synaptic input to one dendritic domain affects the structure and length of the manipulated dendrites while leaving the other set of unmanipulated dendrites largely unchanged. Little is known about the effects of neuronal input on the cytoskeletal structure of NL dendrites and whether changes in the cytoskeleton are responsible for dendritic remodeling following manipulations of synaptic inputs. In this study, we investigate changes in the immunoreactivity of high-molecular weight microtubule associated protein 2 (MAP2) in NL dendrites following two different manipulations of their afferent input. Unilateral cochlea removal eliminates excitatory synaptic input to the ventral dendrites of the contralateral NL and the dorsal dendrites of the ipsilateral NL. This manipulation produced a dramatic decrease in MAP2 immunoreactivity in the deafferented dendrites. This decrease was detected as early as three hours following the surgery, well before any degeneration of afferent axons. A similar decrease in MAP2 immunoreactivity in deafferented NL dendrites was detected following a midline transection that silences the excitatory synaptic input to the ventral dendrites on both sides of the brain. These changes were most distinct in the caudal portion of the nucleus where individual deafferented dendritic branches contained less immunoreactivity than intact dendrites. Our results suggest that the cytoskeletal protein MAP2, which is distributed in dendrites, perikarya, and postsynaptic densities, may play a role in deafferentation-induced dendritic remodeling.
doi:10.1016/j.neuroscience.2008.02.032
PMCID: PMC2693030  PMID: 18440716
deafferentation; dendritic plasticity; afferent regulation; cytoskeleton
23.  Afferent Deprivation Elicits a Transcriptional Response Associated with Neuronal Survival After a Critical Period in the Mouse Cochlear Nucleus 
The mechanisms underlying enhanced plasticity of synaptic connections and susceptibilities to manipulations of afferent activity in developing sensory systems are not well understood. One example is the rapid and dramatic neuron death that occurs after removal of afferent input to the cochlear nucleus (CN) of young mammals and birds. The molecular basis of this critical period of neuronal vulnerability and the transition to survival independent of afferent input remains to be defined. Here we used microarray analyses, real time RT PCR, and immunohistochemistry of the mouse CN to show that deafferentation results in strikingly different sets of regulated genes in vulnerable (postnatal day (P) 7) and invulnerable (P21) CN. An unexpectedly large set of immune-related genes was induced by afferent deprivation after the critical period, which corresponded with glial proliferation over the same time frame. Apoptotic gene expression was not highly regulated in the vulnerable CN after afferent deprivation but, surprisingly, did increase after deafferentation at P21, when all neurons ultimately survive. Pharmacological activity blockade in the 8th nerve mimicked afferent deprivation for only a subset of the afferent deprivation regulated genes, indicating the presence of an additional factor not dependent on action potential-mediated signaling that is also responsible for transcriptional changes. Overall, our results suggest that the cell death machinery during this critical period is mainly constitutive, whereas after the critical period neuronal survival could be actively promoted by both constitutive and induced gene expression.
doi:10.1523/JNEUROSCI.2697-08.2008
PMCID: PMC2585504  PMID: 18945907
microarray; critical period; cochlear nucleus; activity-dependent; apoptosis; deafferentation; stability
24.  Profiling drug-induced cell death pathways in the zebrafish lateral line 
Programmed cell death (PCD) is an important process in development and disease, as it allows the body to rid itself of unwanted or damaged cells. However, PCD pathways can also be activated in otherwise healthy cells. One such case occurs in sensory hair cells of the inner ear following exposure to ototoxic drugs, resulting in hearing loss and/or balance disorders. The intracellular pathways that determine if hair cells die or survive following this or other ototoxic challenges are incompletely understood. We use the larval zebrafish lateral line, an external hair cell-bearing sensory system, as a platform for profiling cell death pathways activated in response to ototoxic stimuli. In this report the importance of each pathway was assessed by screening a custom cell death inhibitor library for instances when pathway inhibition protected hair cells from the aminoglycosides neomycin or gentamicin, or the chemotherapy agent cisplatin. This screen revealed that each ototoxin likely activated a distinct subset of possible cell death pathways. For example, the proteasome inhibitor Z-LLF-CHO protected hair cells from either aminoglycoside or from cisplatin, while D-methionine, an antioxidant, protected hair cells from gentamicin or cisplatin but not from neomycin toxicity. The calpain inhibitor leupeptin primarily protected hair cells from neomycin, as did a Bax channel blocker. Neither caspase inhibition nor protein synthesis inhibition altered the progression of hair cell death. Taken together, these results suggest that ototoxin-treated hair cells die via multiple processes that form an interactive network of cell death signaling cascades.
doi:10.1007/s10495-013-0816-8
PMCID: PMC3627356  PMID: 23413197
Hair cell; ototoxicity; neomycin; gentamicin; cisplatin
25.  “In-bone” utricle cultures - A simplified, atraumatic technique for in situ cultures of the adult mouse (Mus musculus) utricle 
Hypothesis
The “in-bone” method of culturing utricles described here is a reliable and atraumatic technique for culturing mature mouse hair cells and studying hair cell death and protection.
Background
The current in vitro technique for studying hair cells of the mature mouse utricle involves removal from the temporal bone and free floating culture in media. This technique can be problematic due to variability in the preservation of the sensory epithelium and a steep learning curve that results in injury of the sensory epithelium in less experienced hands. We present a new atraumatic technique of culturing the utricle in situ within the temporal bone.
Methods
Leaving the temporal bone largely intact, a window is opened in the bony vestibule overlying the mouse utricle. The entire temporal bone is then placed into culture media. Utricles were cultured in situ for several days with minimal damage to the epithelium. The utricles are then fixed in situ, removed from the temporal bone, and processed. A standardized aminoglycoside-induced hair cell damage protocol was developed.
Results
Mature mouse utricles maintained hair cell numbers for 3 days in culture. Exposure to neomycin resulted in significant dose-dependent hair cell toxicity (p<.0001, one-way ANOVA). Exposure to the protective drug tacrine resulted in significant protection against neomycin (p<.05, three-way ANOVA).
Conclusion
The “in-bone” technique is a reliable and atraumatic method for culturing mature mouse utricles and studying hair cell death and protection. It is easily mastered and can make in vitro study of hair cells accessible to more research groups.
PMCID: PMC3711753  PMID: 23444481

Results 1-25 (53)