PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Structured Connectivity in Cerebellar Inhibitory Networks 
Neuron  2014;81(4):913-929.
Summary
Defining the rules governing synaptic connectivity is key to formulating theories of neural circuit function. Interneurons can be connected by both electrical and chemical synapses, but the organization and interaction of these two complementary microcircuits is unknown. By recording from multiple molecular layer interneurons in the cerebellar cortex, we reveal specific, nonrandom connectivity patterns in both GABAergic chemical and electrical interneuron networks. Both networks contain clustered motifs and show specific overlap between them. Chemical connections exhibit a preference for transitive patterns, such as feedforward triplet motifs. This structured connectivity is supported by a characteristic spatial organization: transitivity of chemical connectivity is directed vertically in the sagittal plane, and electrical synapses appear strictly confined to the sagittal plane. The specific, highly structured connectivity rules suggest that these motifs are essential for the function of the cerebellar network.
Highlights
•Quadruple patch recordings from interneurons reveal highly nonrandom connectivity•Both chemical and electrical interneuron networks exhibit spatial clustering•Chemical synaptic connections are organized in transitive feedforward motifs•The electrical and chemical networks show specific overlap at the triplet level
Interneurons are connected by both chemical and electrical synapses, but the organization of this connectivity is unknown. With quadruple recordings from cerebellar interneurons, Rieubland et al. find that electrical and chemical interneuron networks exhibit highly structured nonrandom connectivity, including clustered and feedforward motifs.
doi:10.1016/j.neuron.2013.12.029
PMCID: PMC3988957  PMID: 24559679
2.  Initiation of simple and complex spikes in cerebellar Purkinje cells 
The Journal of Physiology  2010;588(Pt 10):1709-1717.
Cerebellar Purkinje cells produce two distinct forms of action potential output: simple and complex spikes. Simple spikes occur spontaneously or are driven by parallel fibre input, while complex spikes are activated by climbing fibre input. Previous studies indicate that both simple and complex spikes originate in the axon of Purkinje cells, but the precise location where they are initiated is unclear. Here we address where in the axon of cerebellar Purkinje cells simple and complex spikes are generated. Using extracellular recording and voltage-sensitive dye imaging in rat and mouse Purkinje cells, we show that both simple and complex spikes are generated in the proximal axon, ∼15–20 μm from the soma. Once initiated, simple and complex spikes propagate both down the axon and back into the soma. The speed of backpropagation into the soma was significantly faster for complex compared to simple spikes, presumably due to charging of the somatodendritic membrane capacitance during the climbing fibre synaptic conductance. In conclusion, we show using two independent methods that the final integration site of simple and complex spikes is in the proximal axon of cerebellar Purkinje cells, at a location corresponding to the distal end of the axon initial segment.
doi:10.1113/jphysiol.2010.188300
PMCID: PMC2887989  PMID: 20351049
3.  Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex 
Nature  2010;466(7302):123-127.
It is well known that neural activity exhibits variability, in the sense that identical sensory stimuli produce different responses, but it has been difficult to determine what this variability means. Is it noise, or does it carry important information – about, for example, the internal state of the organism? We address this issue from the bottom up, by asking whether small perturbations to activity in cortical networks are amplified. Based on in vivo whole-cell recordings in rat barrel cortex, we find that a perturbation consisting of a single extra spike in one neuron produces ~28 additional spikes in its postsynaptic targets, and we show, using simultaneous intra- and extra-cellular recordings, that a single spike produces a detectable increase in firing rate in the local network. Theoretical analysis indicates that this amplification leads to intrinsic, stimulus-independent variations in membrane potential on the order of ±2.2 - 4.5 mV – variations that are pure noise, and so carry no information at all. Therefore, for the brain to perform reliable computations, it must either use a rate code, or generate very large, fast depolarizing events, such as those proposed by the theory of synfire chains – yet in our in vivo recordings, we found that such events were very rare. Our findings are consistent with the idea that cortex is likely to use primarily a rate code.
doi:10.1038/nature09086
PMCID: PMC2898896  PMID: 20596024
4.  A New Approach for Determining Phase Response Curves Reveals that Purkinje Cells Can Act as Perfect Integrators 
PLoS Computational Biology  2010;6(4):e1000768.
Cerebellar Purkinje cells display complex intrinsic dynamics. They fire spontaneously, exhibit bistability, and via mutual network interactions are involved in the generation of high frequency oscillations and travelling waves of activity. To probe the dynamical properties of Purkinje cells we measured their phase response curves (PRCs). PRCs quantify the change in spike phase caused by a stimulus as a function of its temporal position within the interspike interval, and are widely used to predict neuronal responses to more complex stimulus patterns. Significant variability in the interspike interval during spontaneous firing can lead to PRCs with a low signal-to-noise ratio, requiring averaging over thousands of trials. We show using electrophysiological experiments and simulations that the PRC calculated in the traditional way by sampling the interspike interval with brief current pulses is biased. We introduce a corrected approach for calculating PRCs which eliminates this bias. Using our new approach, we show that Purkinje cell PRCs change qualitatively depending on the firing frequency of the cell. At high firing rates, Purkinje cells exhibit single-peaked, or monophasic PRCs. Surprisingly, at low firing rates, Purkinje cell PRCs are largely independent of phase, resembling PRCs of ideal non-leaky integrate-and-fire neurons. These results indicate that Purkinje cells can act as perfect integrators at low firing rates, and that the integration mode of Purkinje cells depends on their firing rate.
Author Summary
By observing how brief current pulses injected at different times between spikes change the phase of spiking of a neuron (and thus obtaining the so-called phase response curve), it should be possible to predict a full spike train in response to more complex stimulation patterns. When we applied this traditional protocol to obtain phase response curves in cerebellar Purkinje cells in the presence of noise, we observed a triangular region devoid of data points near the end of the spiking cycle. This “Bermuda Triangle” revealed a flaw in the classical method for constructing phase response curves. We developed a new approach to eliminate this flaw and used it to construct phase response curves of Purkinje cells over a range of spiking rates. Surprisingly, at low firing rates, phase changes were independent of the phase of the injected current pulses, implying that the Purkinje cell is a perfect integrator under these conditions. This mechanism has not yet been described in other cell types and may be crucial for the information processing capabilities of these neurons.
doi:10.1371/journal.pcbi.1000768
PMCID: PMC2861707  PMID: 20442875
5.  Initiation of simple and complex spikes in cerebellar Purkinje cells 
The Journal of Physiology  2010;588(10):1709-1717.
Cerebellar Purkinje cells produce two distinct forms of action potential output: simple and complex spikes. Simple spikes occur spontaneously or are driven by parallel fibre input, while complex spikes are activated by climbing fibre input. Previous studies indicate that both simple and complex spikes originate in the axon of Purkinje cells, but the precise location where they are initiated is unclear. Here we address where in the axon of cerebellar Purkinje cells simple and complex spikes are generated. Using extracellular recording and voltage-sensitive dye imaging in rat and mouse Purkinje cells, we show that both simple and complex spikes are generated in the proximal axon, ∼15–20 μm from the soma. Once initiated, simple and complex spikes propagate both down the axon and back into the soma. The speed of backpropagation into the soma was significantly faster for complex compared to simple spikes, presumably due to charging of the somatodendritic membrane capacitance during the climbing fibre synaptic conductance. In conclusion, we show using two independent methods that the final integration site of simple and complex spikes is in the proximal axon of cerebellar Purkinje cells, at a location corresponding to the distal end of the axon initial segment.
doi:10.1113/jphysiol.2010.188300
PMCID: PMC2887989  PMID: 20351049

Results 1-5 (5)