Search tips
Search criteria

Results 1-24 (24)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Computational Approaches to Analyze and Predict Small Molecule Transport and Distribution at Cellular and Subcellular Levels 
Quantitative structure-activity relationship (QSAR) studies and mechanistic mathematical modeling approaches have been independently employed for analyzing and predicting the transport and distribution of small molecule chemical agents in living organisms. Both of these computational approaches have been useful to interpret experiments measuring the transport properties of small molecule chemical agents, in vitro and in vivo. Nevertheless, mechanistic cell-based pharmacokinetic models have been especially useful to guide the design of experiments probing the molecular pathways underlying small molecule transport phenomena. Unlike QSAR models, mechanistic models can be integrated from microscopic to macroscopic levels, to analyze the spatiotemporal dynamics of small molecule chemical agents from intracellular organelles to whole organs, well beyond the experiments and training data sets upon which the models are based. Based on differential equations, mechanistic models can also be integrated with other differential equations-based systems biology models of biochemical networks or signaling pathways. Although the origin and evolution of mathematical modeling approaches aimed at predicting drug transport and distribution has occurred independently from systems biology, we propose that the incorporation of mechanistic cell-based computational models of drug transport and distribution into a systems biology modeling framework is a logical next-step for the advancement of systems pharmacology research.
PMCID: PMC3947293  PMID: 24218242
Cellular pharmacokinetics; Computational modeling; Drug Transport; Systems pharmacology
2.  Modeling and Simulation of Intracellular Drug Transport and Disposition Pathways with Virtual Cell 
The development of computational approaches for modeling the spatiotemporal dynamics of intracellular, small molecule drug concentrations has become an increasingly important area of pharmaceutical research. For systems pharmacology, the system dynamics of subcellular transport can be coupled to downstream pharmacological effects on biochemical pathways that impact cell structure and function. Here, we demonstrate how a widely used systems biology modeling package – Virtual Cell – can also be used to model the intracellular, passive transport pathways of small druglike molecules. Using differential equations to represent passive drug transport across cellular membranes, spatiotemporal changes in the intracellular distribution and concentrations of exogenous chemical agents in specific subcellular organelles were simulated for weakly acidic, neutral, and basic molecules, as a function of the molecules’ lipophilicity and ionization potentials. In addition, we simulated the transport properties of small molecule chemical agents in the presence of a homogenous extracellular concentration or a transcellular concentration gradient. We also simulated the effects of cell type-dependent variations in the intracellular microenvironments on the distribution and accumulation of small molecule chemical agents in different organelles over time, under influx and efflux conditions. Lastly, we simulated the transcellular transport of small molecule chemical agents, in the presence of different apical and basolateral microenvironments. By incorporating existing models of drug permeation and subcellular distribution, our results indicate that Virtual Cell can provide a user-friendly, open, online computational modeling platform for systems pharmacology and biopharmaceutics research, making mathematical models and simulation results accessible to a broad community of users, without requiring advanced computer programming knowledge.
PMCID: PMC3869409  PMID: 24364041
Virtual Cell; Drug Disposition; Simulation and Modeling; Pharmacokinetics; Pharmacology; Computational Biology; Systems Biology; Systems Pharmacology
3.  Multiscale Distribution and Bioaccumulation Analysis of Clofazimine Reveals a Massive Immune System-Mediated Xenobiotic Sequestration Response 
Chronic exposure to some well-absorbed but slowly eliminated xenobiotics can lead to their bioaccumulation in living organisms. Here, we studied the bioaccumulation and distribution of clofazimine, a riminophenazine antibiotic used to treat mycobacterial infection. Using mice as a model organism, we performed a multiscale, quantitative analysis to reveal the sites of clofazimine bioaccumulation during chronic, long-term exposure. Remarkably, between 3 and 8 weeks of dietary administration, clofazimine massively redistributed from adipose tissue to liver and spleen. During this time, clofazimine concentration in fat and serum significantly decreased, while the mass of clofazimine in spleen and liver increased by >10-fold. These changes were paralleled by the accumulation of clofazimine in the resident macrophages of the lymphatic organs, with as much as 90% of the clofazimine mass in spleen sequestered in intracellular crystal-like drug inclusions (CLDIs). The amount of clofazimine associated with CLDIs of liver and spleen macrophages disproportionately increased and ultimately accounted for a major fraction of the total clofazimine in the host. After treatment was discontinued, clofazimine was retained in spleen while its concentrations decreased in blood and other organs. Immunologically, clofazimine bioaccumulation induced a local, monocyte-specific upregulation of various chemokines and receptors. However, interleukin-1 receptor antagonist was also upregulated, and the acute-phase response pathways and oxidant capacity decreased or remained unchanged, marking a concomitant activation of an anti-inflammatory response. These experiments indicate an inducible, immune system-dependent, xenobiotic sequestration response affecting the atypical pharmacokinetics of a small molecule chemotherapeutic agent.
PMCID: PMC3591914  PMID: 23263006
4.  Chemical Address Tags of Fluorescent Bioimaging Probes 
Chemical address tags can be defined as specific structural features shared by a set of bioimaging probes having a predictable influence on cell-associated visual signals obtained from these probes. Here, using a large image dataset acquired with a high content screening instrument, machine vision and cheminformatics analysis have been applied to reveal chemical address tags. With a combinatorial library of fluorescent molecules, fluorescence signal intensity, spectral, and spatial features characterizing each one of the probes' visual signals were extracted from images acquired with the three different excitation and emission channels of the imaging instrument. With multivariate regression, the additive contribution from each one of the different building blocks of the bioimaging probes towards each measured, cell-associated image-based feature was calculated. In this manner, variations in the chemical features of the molecules were associated with the resulting staining patterns, facilitating quantitative, objective analysis of chemical address tags. Hierarchical clustering and paired image-cheminformatics analysis revealed key structure-property relationships amongst many building blocks of the fluorescent molecules. The results point to different chemical modifications of the bioimaging probes that can exert similar (or different) effects on the probes' visual signals. Inspection of the clustered structures suggests intramolecular charge migration or partial charge distribution as potential mechanistic determinants of chemical address tag behavior.
PMCID: PMC2907078  PMID: 20104576
Cheminformatics; machine vision; bioimaging; fluorescence; high content screening; image cytometry; combinatorial chemistry
5.  The Extracellular Microenvironment Explains Variations in Passive Drug Transport across Different Airway Epithelial Cell Types 
Pharmaceutical research  2013;30(8):2118-2132.
We sought to identify key variables in cellular architecture and physiology that might explain observed differences in the passive transport properties of small molecule drugs across different airway epithelial cell types.
Propranolol (PR) was selected as a weakly basic, model compound to compare the transport properties of primary (NHBE) vs. tumor-derived (Calu-3) cells. Differentiated on Transwell™ inserts, the architecture of pure vs. mixed cell co-cultures was studied with confocal microscopy followed by quantitative morphometric analysis. Cellular pharmacokinetic modeling was used to identify parameters that differentially affect PR uptake and transport across these two cell types.
Pure Calu-3 and NHBE cells possessed different structural and functional properties. Nevertheless, mixed Calu-3 and NHBE cell co-cultures differentiated as stable cell monolayers. After measuring the total mass of PR, the fractional areas covered by Calu-3 and NHBE cells allowed deconvoluting the transport properties of each cell type. Based on the apparent thickness of the unstirred, cell surface aqueous layer, local differences in extracellular microenvironment explained the measured variations in passive PR uptake and permeation between Calu-3 and NHBE cells.
Mixed cell co-cultures can be used to compare the local effects of the extracellular microenvironment on drug uptake and transport across two epithelial cell types.
PMCID: PMC3706189  PMID: 23708857
cellular pharmacokinetics; Calu-3 cells; local drug absorption; inhaled drug delivery; computational modeling
Molecular pharmaceutics  2006;3(6):704-716.
In the body, cell monolayers serve as permeability barriers, determining transport of drug molecules from one organ or tissue compartment to another. After oral administration, for example, drug transport across the epithelial cell monolayer lining the lumen of the intestine determines the fraction of drug in the gut that is absorbed by the body. By modeling passive transcellular transport properties in the presence of an apical to basolateral concentration gradient, we demonstrate how a computational, cell-based molecular transport simulator can be used to define a physicochemical property space occupied by molecules with desirable permeability and intracellular retention characteristics. Considering extracellular domains of cell surface receptors located on the opposite side of a cell monolayer as a drug’s desired site-of-action, simulation of transcellular transport can be used to define the physicochemical properties of molecules with maximal transcellular permeability but minimal intracellular retention. Arguably, these molecules would possess very desirable features: least likely to exhibit non-specific toxicity, metabolism and side effects associated with high (undesirable) intracellular accumulation; and, most likely to exhibit favorable bioavailability and efficacy associated with maximal rates of transport across cells and minimal intracellular retention, resulting in (desirable) accumulation at the extracellular site-of-action. Calculated permeability predictions showed good correlations with PAMPA, Caco2, and intestinal permeability measurements, without “training” the model and without resorting to statistical regression techniques to “fit” the data. Therefore, cell-based molecular transport simulators could be useful in silico screening tools for chemical genomics and drug discovery.
PMCID: PMC2710883  PMID: 17140258
Metoprolol; permeability; chemical space; computer aided drug design; virtual screening; chemical genomics; cellular pharmacokinetics; cheminformatics; drug transport; PAMPA; Biopharmaceutics Classification System
7.  Machine vision assisted analysis of structure-localization relationships in a combinatorial library of prospective bioimaging probes 
With a combinatorial library of bioimaging probes, it is now possible to use machine vision to analyze the contribution of different building blocks of the molecules to their cell-associated visual signals. For athis purpose, cell-permeant, fluorescent styryl molecules were synthesized by condensation of 168 aldehyde with 8 pyridinium/quinolinium building blocks. Images of cells incubated with fluorescent molecules were acquired with a high content screening instrument. Chemical and image feature analysis revealed how variation in one or the other building block of the styryl molecules led to variations in the molecules' visual signals. Across each pair of probes in the library, chemical similarity was significantly associated with spectral and total signal intensity similarity. However, chemical similarity was much less associated with similarity in subcellular probe fluorescence patterns. Quantitative analysis and visual inspection of pairs of images acquired from pairs of styryl isomers confirm that many closely-related probes exhibit different subcellular localization patterns. Therefore, idiosyncratic interactions between styryl molecules and specific cellular components greatly contribute to the subcellular distribution of the styryl probes' fluorescence signal. These results demonstrate how machine vision and cheminformatics can be combined to analyze the targeting properties of bioimaging probes, using large image data sets acquired with automated screening systems.
PMCID: PMC2692593  PMID: 19243023
Cheminformatics; machine vision; bioimaging; fluorescence; styryl; high content screening; image cytometry; combinatorial chemistry
8.  Pulsed Magnetic Field Improves the Transport of Iron Oxide Nanoparticles through Cell Barriers 
ACS nano  2013;7(3):2161-2171.
Understanding how a magnetic field affects the interaction of magnetic nanoparticles (MNPs) with cells is fundamental to any potential downstream applications of MNPs as gene and drug delivery vehicles. Here, we present a quantitative analysis of how a pulsed magnetic field influences the manner in which MNPs interact with, and penetrate across a cell monolayer. Relative to a constant magnetic field, the rate of MNP uptake and transport across cell monolayers was enhanced by a pulsed magnetic field. MNP transport across cells was significantly inhibited at low temperature under both constant and pulsed magnetic field conditions, consistent with an active mechanism (i.e. endocytosis) mediating MNP transport. Microscopic observations and biochemical analysis indicated that, in a constant magnetic field, transport of MNPs across the cells was inhibited due to the formation of large (>2 μm) magnetically-induced MNP aggregates, which exceeded the size of endocytic vesicles. Thus, a pulsed magnetic field enhances the cellular uptake and transport of MNPs across cell barriers relative to a constant magnetic field by promoting accumulation while minimizing magnetically-induced MNP aggregates at the cell surface.
PMCID: PMC3609927  PMID: 23373613
Magnetic field; Superparamagnetic iron oxide nanoparticles; Magnetic targeting; Drug delivery; Bioimaging; Magnetically-guided therapy; Cell-based assays
9.  Visualizing chemical structure-subcellular localization relationships using fluorescent small molecules as probes of cellular transport 
To study the chemical determinants of small molecule transport inside cells, it is crucial to visualize relationships between the chemical structure of small molecules and their associated subcellular distribution patterns. For this purpose, we experimented with cells incubated with a synthetic combinatorial library of fluorescent, membrane-permeant small molecule chemical agents. With an automated high content screening instrument, the intracellular distribution patterns of these chemical agents were microscopically captured in image data sets, and analyzed off-line with machine vision and cheminformatics algorithms. Nevertheless, it remained challenging to interpret correlations linking the structure and properties of chemical agents to their subcellular localization patterns in large numbers of cells, captured across large number of images.
To address this challenge, we constructed a Multidimensional Online Virtual Image Display (MOVID) visualization platform using off-the-shelf hardware and software components. For analysis, the image data set acquired from cells incubated with a combinatorial library of fluorescent molecular probes was sorted based on quantitative relationships between the chemical structures, physicochemical properties or predicted subcellular distribution patterns. MOVID enabled visual inspection of the sorted, multidimensional image arrays: Using a multipanel desktop liquid crystal display (LCD) and an avatar as a graphical user interface, the resolution of the images was automatically adjusted to the avatar’s distance, allowing the viewer to rapidly navigate through high resolution image arrays, zooming in and out of the images to inspect and annotate individual cells exhibiting interesting staining patterns. In this manner, MOVID facilitated visualization and interpretation of quantitative structure-localization relationship studies. MOVID also facilitated direct, intuitive exploration of the relationship between the chemical structures of the probes and their microscopic, subcellular staining patterns.
MOVID can provide a practical, graphical user interface and computer-assisted image data visualization platform to facilitate bioimage data mining and cheminformatics analysis of high content, phenotypic screening experiments.
PMCID: PMC3852740  PMID: 24093553
Machine vision; Cheminformatics; Virtual reality; Data mining; Optical probes; Multivariate analysis; Human-computer interaction; Graphical user interface
10.  Pulmonary Administration of a Water-Soluble Curcumin Complex Reduces Severity of Acute Lung Injury 
Local or systemic inflammation can result in acute lung injury (ALI), and is associated with capillary leakage, reduced lung compliance, and hypoxemia. Curcumin, a plant-derived polyphenolic compound, exhibits potent anti-inflammatory properties, but its poor solubility and limited oral bioavailability reduce its therapeutic potential. A novel curcumin formulation (CDC) was developed by complexing the compound with hydroxypropyl-γ-cyclodextrin (CD). This results in greatly enhanced water solubility and stability that facilitate direct pulmonary delivery. In vitro studies demonstrated that CDC increased curcumin’s association with and transport across Calu-3 human airway epithelial cell monolayers, compared with uncomplexed curcumin solubilized using DMSO or ethanol. Importantly, Calu-3 cell monolayer integrity was preserved after CDC exposure, whereas it was disrupted by equivalent uncomplexed curcumin solutions. We then tested whether direct delivery of CDC to the lung would reduce severity of ALI in a murine model. Fluorescence microscopic examination revealed an association of curcumin with cells throughout the lung. The administration of CDC after LPS attenuated multiple markers of inflammation and injury, including pulmonary edema and neutrophils in bronchoalveolar lavage fluid and lung tissue. CDC also reduced oxidant stress in the lungs and activation of the proinflammatory transcription factor NF-κB. These results demonstrate the efficacy of CDC in a murine model of lung inflammation and injury, and support the feasibility of developing a lung-targeted, curcumin-based therapy for the treatment of patients with ALI.
PMCID: PMC3488693  PMID: 22312018
cyclodextrin; LPS; turmeric; Calu-3; oxidative stress; TEER
11.  Macrophages Sequester Clofazimine in an Intracellular Liquid Crystal-Like Supramolecular Organization 
PLoS ONE  2012;7(10):e47494.
Clofazimine is a poorly-soluble but orally-bioavailable small molecule drug that massively accumulates in macrophages when administered over prolonged periods of time. To determine whether crystal-like drug inclusions (CLDIs) that form in subcellular spaces correspond to pure clofazimine crystals, macrophages of clofazimine-fed mice were elicited with an intraperitoneal thioglycollate injection. Inside these cells, CLDIs appeared uniform in size and shape, but were sensitive to illumination. Once removed from cells, CLDIs were unstable. Unlike pure clofazimine crystals, isolated CLDIs placed in distilled water burst into small birefringent globules, which aggregated into larger clusters. Also unlike pure clofazimine crystals, CLDIs fragmented when heated, and disintegrated in alkaline media. In contrast to all other organelles, CLDIs were relatively resistant to sonication and trypsin digestion, which facilitated their biochemical isolation. The powder x-ray diffraction pattern obtained from isolated CLDIs was consistent with the diffraction pattern of liquid crystals and inconsistent with the expected molecular diffraction pattern of solid, three dimensional crystals. Observed with the transmission electron microscope (TEM), CLDIs were bounded by an atypical double-layered membrane, approximately 20 nanometers thick. CLDIs were polymorphic, but generally exhibited an internal multilayered organization, comprised of stacks of membranes 5 to 15 nanometers thick. Deep-etch, freeze-fracture electron microscopy of unfixed snap-frozen tissue samples confirmed this supramolecular organization. These results suggest that clofazimine accumulates in macrophages by forming a membrane-bound, multilayered, liquid crystal-like, semi-synthetic cytoplasmic structure.
PMCID: PMC3469554  PMID: 23071814
12.  Molecular Imaging of Intracellular Drug-Membrane Aggregate Formation 
Molecular pharmaceutics  2011;8(5):1742-1749.
Clofazimine is a lipophilic antibiotic with an extremely long pharmacokinetic half-life associated with the appearance of crystal-like drug inclusions, in vivo. Here, we studied how clofazimine accumulates inside cells in the presence of supersaturating, extracellular concentrations of the drug (in the range of physiological drug concentrations). Based on a combination of molecular imaging, biochemical analysis and electron microscopy techniques, clofazimine mass increased inside cells in vitro, over a period of several days, with discrete clofazimine inclusions forming in the cytoplasm. These inclusions grew in size, number and density, as long as the drug-containing medium was replenished. With Raman confocal microscopy, clofazimine’s spectral signature in these inclusions resembled that of amorphous clofazimine precipitates and was unlike that of clofazimine crystals. Additional experiments revealed that clofazimine first accumulated in mitochondria, with ensuing changes in mitochondrial structure and function. In turn, the degenerating organelles coalesced, fused with each other and condensed to form prominent drug-membrane aggregates (dubbed autophagosome-like drug inclusions or “aldis”). Like clofazimine, it is possible that intracellular drug-membrane aggregate formation is a common phenomenon underlying the reported phenotypic effects of many other small molecule drugs.
PMCID: PMC3185106  PMID: 21800872
Drug sequestration; autophagosome-like drug inclusion; drug-membrane aggregates; clofazimine; confocal Raman imaging; phospholipidosis; intracellular crystals
13.  The Subcellular Distribution of Small Molecules: from Pharmacokinetics to Synthetic Biology 
Molecular pharmaceutics  2011;8(5):1619-1628.
The systemic pharmacokinetics and pharmacodynamics of small molecules are determined by subcellular transport phenomena. Although approaches used to study the subcellular distribution of small molecules have gradually evolved over the past several decades, experimental analysis and prediction of cellular pharmacokinetics remains a challenge. In this article, we surveyed the progress of subcellular distribution research since the 1960s, with a focus on the advantages, disadvantages and limitations of the various experimental techniques. Critical review of the existing body of knowledge pointed to many opportunities to advance the rational design of organelle-targeted chemical agents. These opportunities include: 1) development of quantitative, nonfluorescence-based, whole cell methods and techniques to measure the subcellular distribution of chemical agents in multiple compartments; 2) exploratory experimentation with nonspecific transport probes that have not been enriched with putative, organelle-targeting features; 3) elaboration of hypothesis-driven, mechanistic and modeling-based approaches to guide experiments aimed at elucidating subcellular distribution and transport; and 4) introduction of revolutionary conceptual approaches borrowed from the field of synthetic biology combined with cutting edge experimental strategies. In our laboratory, state-of-the-art subcellular transport studies are now being aimed at understanding the formation of new intracellular membrane structures in response to drug therapy, exploring the function of drug-membrane complexes as intracellular drug depots, and synthesizing new organelles with extraordinary physical and chemical properties.
PMCID: PMC3185113  PMID: 21805990
drug transport; pharmacokinetics; biodistribution; drug targeting; databases; mathematical modeling; drug delivery; drug-membrane aggregates; unnatural organelles; synthetic organelles
14.  The Subcellular Distribution of Small Molecules: A Meta-Analysis 
Molecular pharmaceutics  2011;8(5):1611-1618.
To explore the extent to which current knowledge about the organelle-targeting features of small molecules may be applicable towards controlling the accumulation and distribution of exogenous chemical agents inside cells, molecules with known subcellular localization properties (as reported in the scientific literature) were compiled into a single data set. This data set was compared to a reference data set of approved drug molecules derived from the DrugBank database, and to a reference data set of random organic molecules derived from the PubChem database. Cheminformatic analysis revealed that molecules with reported subcellular localizations were comparably diverse. However, the calculated physicochemical properties of molecules reported to accumulate in different organelles were markedly overlapping. In relation to the reference sets of Drug Bank and Pubchem molecules, molecules with reported subcellular localizations were biased towards larger, more complex chemical structures possessing multiple ionizable functional groups and higher lipophilicity. Stratifying molecules based on molecular weight revealed that many physicochemical properties trends associated with specific organelles were reversed in smaller vs. larger molecules. Most likely, these reversed trends are due to the different transport mechanisms determining the subcellular localization of molecules of different sizes. Molecular weight can be dramatically altered by tagging molecules with fluorophores or by incorporating organelle targeting motifs. Generally, in order to better exploit structure-localization relationships, subcellular targeting strategies would benefit from analysis of the biodistribution effects resulting from variations in the size of the molecules.
PMCID: PMC3185174  PMID: 21774504
drug transport; pharmacokinetics; biodistribution; drug targeting; databases; mathematical modeling; drug delivery; cheminformatics
15.  A Cell-based Computational Modeling Approach for Developing Site-Directed Molecular Probes 
PLoS Computational Biology  2012;8(2):e1002378.
Modeling the local absorption and retention patterns of membrane-permeant small molecules in a cellular context could facilitate development of site-directed chemical agents for bioimaging or therapeutic applications. Here, we present an integrative approach to this problem, combining in silico computational models, in vitro cell based assays and in vivo biodistribution studies. To target small molecule probes to the epithelial cells of the upper airways, a multiscale computational model of the lung was first used as a screening tool, in silico. Following virtual screening, cell monolayers differentiated on microfabricated pore arrays and multilayer cultures of primary human bronchial epithelial cells differentiated in an air-liquid interface were used to test the local absorption and intracellular retention patterns of selected probes, in vitro. Lastly, experiments involving visualization of bioimaging probe distribution in the lungs after local and systemic administration were used to test the relevance of computational models and cell-based assays, in vivo. The results of in vivo experiments were consistent with the results of in silico simulations, indicating that mitochondrial accumulation of membrane permeant, hydrophilic cations can be used to maximize local exposure and retention, specifically in the upper airways after intratracheal administration.
Author Summary
We have developed an integrative, cell-based modeling approach to facilitate the design and discovery of chemical agents directed to specific sites of action within a living organism. Here, a computational, multiscale transport model of the lung was adapted to enable virtual screening of small molecules targeting the epithelial cells of the upper airways. In turn, the transport behaviors of selected candidate probes were evaluated to establish their degree of retention at a site of absorption, using computational simulations as well as two in vitro cell-based assay systems. Lastly, bioimaging experiments were performed to examine candidate molecules' distribution in the lungs of mice after local and systemic administration. Based on computational simulations, the higher mitochondrial density per unit absorption surface area is the key parameter determining the higher retention of small molecule hydrophilic cations in the upper airways, relative to lipophilic weak bases, specifically after intratracheal administration.
PMCID: PMC3285574  PMID: 22383866
16.  Cells on Pores: A Simulation-Driven Analysis of Transcellular Small Molecule Transport 
Molecular pharmaceutics  2010;7(2):456-467.
A biophysical, computational model of cell pharmacokinetics (1CellPK) is being developed to enable prediction of the intracellular accumulation and transcellular transport properties of small molecules using their calculated physicochemical properties as input. To test if 1CellPK can generate accurate, quantitative hypotheses and guide experimental analysis of the transcellular transport kinetics of small molecules, epithelial cells were grown on impermeable polyester membranes with cylindrical pores and chloroquine (CQ) was used as a transport probe. The effect of the number of pores and their diameter on transcellular transport of CQ was measured in apical-to-basolateral or basolateral-to-apical directions, at pH 7.4 and 6.5 in the donor compartment. Experimental and simulation results were consistent with a phospholipid bilayer-limited, passive diffusion transport mechanism. In experiments and 1CellPK simulations, intracellular CQ mass and the net rate of mass transport varied <2-fold although total pore area per cell varied >10-fold, so by normalizing the net rate of mass transport by the pore area available for transport, cell permeability on 3µm pore diameter membranes was more than an order of magnitude less than on 0.4µm pore diameter membranes. The results of simulations of transcellular transport were accurate for the first four hours of drug exposure, but those of CQ mass accumulation were accurate only for the first five minutes. Upon prolonged incubation, changes in cellular parameters such as lysosome pH rise, lysosome volume expansion, and nuclear shrinkage were associated with excess CQ accumulation. Based on the simulations, lysosome volume expansion alone can partly account for the measured, total intracellular CQ mass increase, while adding the intracellular binding of the protonated, ionized forms of CQ (as reflected in the measured partition coefficient of CQ in detergent-permeabilized cells at physiological pH) can further improve the intracellular CQ mass accumulation prediction.
PMCID: PMC2920490  PMID: 20025248
Systems Biology; Epithelial Cells; Membrane Transport; Mathematical Models; Pharmacokinetics; Cell Permeability
17.  Cell-based multiscale computational modeling of small molecule absorption and retention in the lungs 
Pharmaceutical research  2010;27(3):457-467.
For optimizing the local, pulmonary targeting of inhaled medications, it is important to analyze the relationship between the physicochemical properties of small molecules and their absorption, retention and distribution in the various cell types of the airways and alveoli.
A computational, multiscale, cell-based model was constructed to facilitate analysis of pulmonary drug transport and distribution. The relationship between the physicochemical properties and pharmacokinetic profile of monobasic molecules was explored. Experimental absorption data of compounds with diverse structures were used to validate this model. Simulations were performed to evaluate the effect of active transport and organelle sequestration on the absorption kinetics of compounds.
Relating the physicochemical properties to the pharmacokinetic profiles of small molecules reveals how the absorption half-life and distribution of compounds are expected to vary in different cell types and anatomical regions of the lung. Based on logP, pKa and molecular radius, the absorption rate constants (Ka) calculated with the model were consistent with experimental measurements of pulmonary drug absorption.
The cell-based mechanistic model developed herein is an important step towards the rational design of local, lung-targeted medications, facilitating the design and interpretation of experiments aimed at optimizing drug transport properties in lung.
PMCID: PMC2907074  PMID: 20099073
18.  Transcellular Transport of Heparin-coated Magnetic Iron Oxide Nanoparticles (Hep-MION) Under the Influence of an Applied Magnetic Field 
Pharmaceutics  2010;2(2):119-135.
In this study, magnetic iron oxide nanoparticles coated with heparin (Hep-MION) were synthesized and the transcellular transport of the nanoparticles across epithelial cell monolayers on porous polyester membranes was investigated. An externally applied magnetic field facilitated the transport of the Hep-MION across cell monolayers. However, high Hep-MION concentrations led to an increased aggregation of nanoparticles on the cell monolayer after application of the magnetic field. Our results indicate that magnetic guidance of Hep-MION most effectively promotes transcellular transport under conditions that minimize formation of magnetically-induced nanoparticle aggregates. Across cell monolayers, the magnet’s attraction led to the greatest increase in mass transport rate in dilute dispersions and in high serum concentrations, suggesting that magnetic guidance may be useful for in vivo targeting of Hep-MION.
PMCID: PMC2997712  PMID: 21152371
magnetic iron oxide nanoparticles (MION); magnetic field; transcellular transport; MDCK cell monolayer; drug targeting
19.  A Tunable Machine Vision-based Strategy for Automated Annotation of Chemical Databases 
We present a tunable, machine vision-based strategy for automated annotation of virtual small molecule databases. The proposed strategy is based on the use of a machine vision based tool for extracting structure diagrams in research articles and converting them into connection tables, a virtual “Chemical Expert” system for screening the converted structures based on the adjustable levels of estimated conversion accuracy, and a fragment-based measure for calculating intermolecular similarity. For annotation, calculated chemical similarity between the converted structures and entries in a virtual small molecule database is used to establish the links. The overall annotation performances can be tuned by adjusting the cutoff threshold of the estimated conversion accuracy. We performed an annotation test which attempts to link 121 journal articles registered in the PubMed to entries in the PubChem which is the largest, publicly accessible chemical database. Two cases of tests are performed and their results are compared to see how the overall annotation performances are affected by the different threshold levels of the estimated accuracy of the converted structure. Our work demonstrates that over 45% of articles could have true positive links to entries in the PubChem database with promising recall and precision rates in both tests. Furthermore, we illustrates that Chemical Expert system which can screen the converted structures based on the adjustable levels of estimated conversion accuracy is a key factor impacting the overall annotation performance. We propose that this machine vision based strategy can be incorporated with the text-mining approach to facilitate extraction of contextual scientific knowledge about a chemical structure, from the scientific literature.
PMCID: PMC2907084  PMID: 19621901
20.  Transcellular Transport of Heparin-coated Magnetic Iron Oxide Nanoparticles (Hep-MION) Under the Influence of an Applied Magnetic Field 
Pharmaceutics  2010;2(2):119-135.
In this study, magnetic iron oxide nanoparticles coated with heparin (Hep-MION) were synthesized and the transcellular transport of the nanoparticles across epithelial cell monolayers on porous polyester membranes was investigated. An externally applied magnetic field facilitated the transport of the Hep-MION across cell monolayers. However, high Hep-MION concentrations led to an increased aggregation of nanoparticles on the cell monolayer after application of the magnetic field. Our results indicate that magnetic guidance of Hep-MION most effectively promotes transcellular transport under conditions that minimize formation of magnetically-induced nanoparticle aggregates. Across cell monolayers, the magnet’s attraction led to the greatest increase in mass transport rate in dilute dispersions and in high serum concentrations, suggesting that magnetic guidance may be useful for in vivo targeting of Hep-MION.
PMCID: PMC2997712  PMID: 21152371
magnetic iron oxide nanoparticles (MION); magnetic field; transcellular transport; MDCK cell monolayer; drug targeting
21.  Quantitative Modeling of Selective Lysosomal Targeting for Drug Design 
European biophysics journal : EBJ  2008;37(8):1317-1328.
Lysosomes are acidic organelles and are involved in various diseases, the most prominent is malaria. Accumulation of molecules in the cell by diffusion from the external solution into cytosol, lysosome and mitochondrium was calculated with the Fick-Nernst-Planck-equation. The cell model considers the diffusion of neutral and ionic molecules across biomembranes, dissociation to mono- or bivalent ions, adsorption to lipids, and electrical attraction or repulsion. Based on simulation results, high and selective accumulation in lysosomes was found for weak mono- and bivalent bases with intermediate to high log Kow. These findings were validated with experimental results and by a comparison to the properties of antimalarial drugs in clinical use. For ten active compounds, nine were predicted to accumulate to a greater extent in lysosomes than in other organelles, six of these were in the optimum range predicted by the model and three were close. Five of the antimalarial drugs were lipophilic weak dibasic compounds. The predicted optimum properties for a selective accumulation of weak bivalent bases in lysosomes are consistent with experimental values and are more accurate than any prior calculation. This demonstrates that the cell model can be a useful tool for the design of effective lysosome-targeting drugs with minimal off-target interactions.
PMCID: PMC2711917  PMID: 18504571
accumulation; base; drug design; lysosome; malaria; model
22.  Selective Targeting of Tumorigenic Cancer Cell Lines by Microtubule Inhibitors 
PLoS ONE  2009;4(2):e4470.
For anticancer drug therapy, it is critical to kill those cells with highest tumorigenic potential, even when they comprise a relatively small fraction of the overall tumor cell population. We have used the established NCI/DTP 60 cell line growth inhibition assay as a platform for exploring the relationship between chemical structure and growth inhibition in both tumorigenic and non-tumorigenic cancer cell lines. Using experimental measurements of “take rate” in ectopic implants as a proxy for tumorigenic potential, we identified eight chemical agents that appear to strongly and selectively inhibit the growth of the most tumorigenic cell lines. Biochemical assay data and structure-activity relationships indicate that these compounds act by inhibiting tubulin polymerization. Yet, their activity against tumorigenic cell lines is more selective than that of the other microtubule inhibitors in clinical use. Biochemical differences in the tubulin subunits that make up microtubules, or differences in the function of microtubules in mitotic spindle assembly or cell division may be associated with the selectivity of these compounds.
PMCID: PMC2636860  PMID: 19214225
23.  Automated extraction of chemical structure information from digital raster images 
To search for chemical structures in research articles, diagrams or text representing molecules need to be translated to a standard chemical file format compatible with cheminformatic search engines. Nevertheless, chemical information contained in research articles is often referenced as analog diagrams of chemical structures embedded in digital raster images. To automate analog-to-digital conversion of chemical structure diagrams in scientific research articles, several software systems have been developed. But their algorithmic performance and utility in cheminformatic research have not been investigated.
This paper aims to provide critical reviews for these systems and also report our recent development of ChemReader – a fully automated tool for extracting chemical structure diagrams in research articles and converting them into standard, searchable chemical file formats. Basic algorithms for recognizing lines and letters representing bonds and atoms in chemical structure diagrams can be independently run in sequence from a graphical user interface-and the algorithm parameters can be readily changed-to facilitate additional development specifically tailored to a chemical database annotation scheme. Compared with existing software programs such as OSRA, Kekule, and CLiDE, our results indicate that ChemReader outperforms other software systems on several sets of sample images from diverse sources in terms of the rate of correct outputs and the accuracy on extracting molecular substructure patterns.
The availability of ChemReader as a cheminformatic tool for extracting chemical structure information from digital raster images allows research and development groups to enrich their chemical structure databases by annotating the entries with published research articles. Based on its stable performance and high accuracy, ChemReader may be sufficiently accurate for annotating the chemical database with links to scientific research articles.
PMCID: PMC2648963  PMID: 19196483
24.  Simulation-based cheminformatic analysis of organelle-targeted molecules: lysosomotropic monobasic amines 
Cell-based molecular transport simulations are being developed to facilitate exploratory cheminformatic analysis of virtual libraries of small drug-like molecules. For this purpose, mathematical models of single cells are built from equations capturing the transport of small molecules across membranes. In turn, physicochemical properties of small molecules can be used as input to simulate intracellular drug distribution, through time. Here, with mathematical equations and biological parameters adjusted so as to mimic a leukocyte in the blood, simulations were performed to analyze steady state, relative accumulation of small molecules in lysosomes, mitochondria, and cytosol of this target cell, in the presence of a homogenous extracellular drug concentration. Similarly, with equations and parameters set to mimic an intestinal epithelial cell, simulations were also performed to analyze steady state, relative distribution and transcellular permeability in this non-target cell, in the presence of an apical-to-basolateral concentration gradient. With a test set of ninety-nine monobasic amines gathered from the scientific literature, simulation results helped analyze relationships between the chemical diversity of these molecules and their intracellular distributions.
Electronic supplementary material
The online version of this article (doi:10.1007/s10822-008-9194-7) contains supplementary material, which is available to authorized users.
PMCID: PMC2516532  PMID: 18338229
Cheminformatics; Lysosomotropic; Cellular pharmacokinetics; Drug transport; Small molecule permeability; Subcellular localization; Simulation; Rational drug design

Results 1-24 (24)