Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  A Biomechanical Model of Human Ankle Angle Changes Arising From Short Peri-Threshold Anterior Translations of Platform on Which a Subject Stands 
This study modeled ankle angle changes during small forward perturbations of a standing platform. A two-dimensional biomechanical inverted pendulum model was developed that uses sway frequencies derived from quiet standing observations on a subject's Anterior Posterior Center of Pressure (APCoP) to track ankle angle changes during a 16 mm anterior displacement perturbation of a platform on which a subject stood. This model used the total torque generated at the ankle joint as one of the inputs, and calculated it assuming a PID controller. This feedback system generated a simulated ankle torque based on the angular position of the center of mass (CoM) with respect to vertical line passing through the ankle joint. This study also assumed that the internal components of the net torque were only a controller torque and a sway-pattern-generating torque. The final inputs to the model were the platform acceleration and anthropometric terms. This model of postural sway dynamics predicted sway angle and the trajectory of the center of mass. Knowing these relationships can advance an understanding of the ankle strategy employed in balance control.
PMCID: PMC2261377  PMID: 18002955
Sway Frequencies; Biomechanical Model; Ankle Angle; APCoP; Center of Mass
2.  Amplitude Demodulation of Entrained Sway to Analyze Human Postural Control 
This paper presents an innovative technique to study postural control. Our translating platform, the Sliding Linear Investigative Platform For Analyzing Lower Limb Stability and Simultaneous Tracking, EMG and Pressure mapping (SLIP-FALLS-STEPm), makes precise, vibration movements under controlled conditions. We look at the psychophysical thresholds to the perception of a sinusoidally induced sway. In the Sine Lock experiments described, an induced sinusoidal perturbation locks the subject's natural sway pattern at the frequency of the perturbation. The input / output system is treated as an Amplitude Shift Key (ASK) modulated signal modulating a carrier frequency (at or about a subject's natural sway frequency). The Position signal (input) and the Anterior-Posterior Center of Pressure (APCOP) signal (output) or the ankle angle are demodulated by mixing them with the pure sine wave carrier at the frequency of underlying oscillation and then low-pass filtering it to detect the amplitude envelope. These detected envelopes elucidate that the square pulse increase in the position sine wave amplitude yields a triangular increase in APCOP demodulated signal.
PMCID: PMC2261375  PMID: 18003110
3.  A Phase-Locked Loop Model of the Response of the Postural Control System to Periodic Platform Motion 
A phase-locked loop (PLL) model of the response of the postural control system to periodic platform motion is proposed. The PLL model is based on the hypothesis that quiet standing (QS) postural sway can be characterized as a weak sinusoidal oscillation corrupted with noise. Because the signal to noise ratio is quite low, the characteristics of the QS oscillator are not measured directly from the QS sway, instead they are inferred from the response of the oscillator to periodic motion of the platform. When a sinusoidal stimulus is applied, the QS oscillator changes speed as needed until its frequency matches that of the platform, thus achieving phase lock in a manner consistent with a PLL control mechanism. The PLL model is highly effective in representing the frequency, amplitude, and phase shift of the sinusoidal component of the phase-locked response over a range of platform frequencies and amplitudes. Qualitative analysis of the PLL control mechanism indicates that there is a finite range of frequencies over which phase lock is possible, and that the size of this capture range decreases with decreasing platform amplitude. The PLL model was tested experimentally using nine healthy subjects and the results reveal good agreement with a mean phase shift error of 13.7° and a mean amplitude error of 0.8 mm.
PMCID: PMC2913702  PMID: 20378479
Mathematical model; phase-locked loop; postural control
4.  Categorizing and comparing psychophysical detection strategies based on biomechanical responses to short postural perturbations 
A fundamental unsolved problem in psychophysical detection experiments is in discriminating guesses from the correct responses. This paper proposes a coherent solution to this problem by presenting a novel classification method that compares biomechanical and psychological responses.
Subjects (13) stood on a platform that was translated anteriorly 16 mm to find psychophysical detection thresholds through a Adaptive 2-Alternative-Forced-Choice (2AFC) task repeated over 30 separate sequential trials. Anterior-posterior center-of-pressure (APCoP) changes (i.e., the biomechanical response RB) were analyzed to determine whether sufficient biomechanical information was available to support a subject's psychophysical selection (RΨ) of interval 1 or 2 as the stimulus interval. A time-series-bitmap approach was used to identify anomalies in interval 1 (a1) and interval 2 (a2) that were present in the resultant APCoP signal. If a1 > a2 then RB = Interval 1. If a1 < a2, then RB= Interval 2. If a2 - a1 < 0.1, RB was set to 0 (no significant difference present in the anomaly scores of interval 1 and 2).
By considering both biomechanical (RB) and psychophysical (RΨ) responses, each trial run could be classified as a: 1) HIT (and True Negative), if RB and RΨ both matched the stimulus interval (SI); 2) MISS, if RB matched SI but the subject's reported response did not; 3) PSUEDO HIT, if the subject signalled the correct SI, but RB was linked to the non-SI; 4) FALSE POSITIVE, if RB = RΨ, and both associated to non-SI; and 5) GUESS, if RB = 0, if insufficient APCoP differences existed to distinguish SI. Ensemble averaging the data for each of the above categories amplified the anomalous behavior of the APCoP response.
The major contributions of this novel classification scheme were to define and verify by logistic models a 'GUESS' category in these psychophysical threshold detection experiments, and to add an additional descriptor, "PSEUDO HIT". This improved classification methodology potentially could be applied to psychophysical detection experiments of other sensory modalities.
PMCID: PMC2959020  PMID: 20932297
5.  The effects of diabetes and/or peripheral neuropathy in detecting short postural perturbations in mature adults 
This study explored the effects of diabetes mellitus (DM) and peripheral neuropathy (PN) on the ability to detect near-threshold postural perturbations.
83 subjects participated; 32 with type II DM (25 with PN and 7 without PN), 19 with PN without DM, and 32 without DM or PN. Peak acceleration thresholds for detecting anterior platform translations of 1 mm, 4 mm, and 16 mm displacements were determined. A 2(DM) × 2(PN) factorial MANCOVA with weight as a covariate was calculated to compare acceleration detection thresholds among subjects who had DM or did not and who had PN or did not.
There was a main effect for DM but not for PN. Post hoc analysis revealed that subjects with DM required higher accelerations to detect a 1 mm and 4 mm displacement.
Our findings suggest that PN may not be the only cause of impaired balance in people with DM. Clinicians should be aware that diabetes itself might negatively impact the postural control system.
PMCID: PMC2945352  PMID: 20836855
6.  A Quiet Standing Index for Testing the Postural Sway of Healthy and Diabetic Adults Across a Range of Ages 
A quietstanding index is developed for tracking the postural sway of healthy and diabetic adults over a range of ages. Several postural sway features are combined into a single composite feature C that increases with age a. Sway features are ranked based on the r2 -values of their linear regression models, and the composite feature is a weighted sum of selected sway features with optimal weighting coefficients determined using principal component analysis. A performance index based on both reliability and sensitivity is used to determine the optimal number of features. The features used to form C include power and distance metrics. The quiet standing index is a scalar that compares the composite feature C to a linear regression model f (a) using C′ (a) = C/f (a). For a motionless subject, C′ = 0, and when the composite feature exactly matches the healthy control (HC) model, C′ = 1. Values of C′ ≫ 1 represent excessive postural sway and may indicate impaired postural control. Diabetic neurologically intact subjects, nondiabetic peripheral neuropathy subjects (PN), and diabetic PN subjects (DPN) were evaluated. The quiet standing indexes of the PN and DPN groups showed statistically significant increases over the HC group. Changes in the quiet standing index over time may be useful in identifying people with impaired balance who may be at an increased risk of falling.
PMCID: PMC2836593  PMID: 19342327
Diabetes; peripheral neuropathy (PN); postural sway metrics; quiet standing index
7.  Effect of lateral perturbations on psychophysical acceleration detection thresholds 
In understanding how the human body perceives and responds to small slip-like motions, information on how one senses the slip is essential. The effect of aging and plantar sensory loss on detection of a slip can also be studied. Using psychophysical procedures, acceleration detection thresholds of small lateral whole-body perturbations were measured for healthy young adults (HYA), healthy older adults (HOA) and older adults with diabetic neuropathy (DOA). It was hypothesized that young adults would require smaller accelerations than HOA's and DOA's to detect perturbations at a given displacement.
Acceleration detection thresholds to whole-body lateral perturbations of 1, 2, 4, 8, and 16 mm were measured for HYAs, HOAs, and DOAs using psychophysical procedures including a two-alternative forced choice protocol. Based on the subject's detection of the previous trial, the acceleration magnitude of the subsequent trial was increased or decreased according to the parameter estimation by sequential testing methodology. This stair-stepping procedure allowed acceleration thresholds to be measured for each displacement.
Results indicate that for lateral displacements of 1 and 2 mm, HOAs and DOAs have significantly higher acceleration detection thresholds than young adults. At displacements of 8 and 16 mm, no differences in threshold were found among groups or between the two perturbation distances. The relationship between the acceleration threshold and perturbation displacement is of particular interest. Peak acceleration thresholds of approximately 10 mm/s2 were found at displacements of 2, 4, 8, and 16 mm for HYAs; at displacements of 4, 8, and 16 mm for HOAs; and at displacements of 8 and 16 mm for DOAs. Thus, 2, 4, and 8 mm appear to be critical breakpoints for HYAs, HOAs, and DOAs respectively, where the psychometric curve deviated from a negative power law relationship. These critical breakpoints likely indicate a change in the physiology of the system as it responds to the stimuli.
As a function of age, the displacement at which the group deviates from a negative power law relationship increases from 2 mm to 4 mm. Additionally, the displacement at which subjects with peripheral sensory deficits deviate from the negative power law relations increases to 8 mm. These increases as a function of age and peripheral sensory loss may help explain the mechanism of falls in the elderly and diabetic populations.
PMCID: PMC1402298  PMID: 16433916
8.  A comparative study of reaction times between type II diabetics and non-diabetics 
Aging has been shown to slow reflexes and increase reaction time to varied stimuli. However, the effect of Type II diabetes on these same reaction times has not been reported. Diabetes affects peripheral nerves in the somatosensory and auditory system, slows psychomotor responses, and has cognitive effects on those individuals without proper metabolic control, all of which may affect reaction times. The additional slowing of reaction times may affect every-day tasks such as balance, increasing the probability of a slip or fall.
Reaction times to a plantar touch, a pure tone auditory stimulus, and rightward whole-body lateral movement of 4 mm at 100 mm/s2 on a platform upon which a subject stood, were measured in 37 adults over 50 yrs old. Thirteen (mean age = 60.6 ± 6.5 years) had a clinical diagnosis of type II diabetes and 24 (mean age = 59.4 ± 8.0 years) did not. Group averages were compared to averages obtained from nine healthy younger adult group (mean age = 22.7 ± 1.2 years).
Average reaction times for plantar touch were significantly longer in diabetic adults than the other two groups, while auditory reaction times were not significantly different among groups. Whole body reaction times were significantly different among all three groups with diabetic adults having the longest reaction times, followed by age-matched adults, and then younger adults.
Whole body reaction time has been shown to be a sensitive indicator of differences between young adults, healthy mature adults, and mature diabetic adults. Additionally, the increased reaction time seen in this modality for subjects with diabetes may be one cause of increased slips and falls in this group.
PMCID: PMC555589  PMID: 15723700

Results 1-8 (8)