PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Successive Cambia: A Developmental Oddity or an Adaptive Structure? 
PLoS ONE  2011;6(1):e16558.
Background
Secondary growth by successive cambia is a rare phenomenon in woody plant species. Only few plant species, within different phylogenetic clades, have secondary growth by more than one vascular cambium. Often, these successive cambia are organised concentrically. In the mangrove genus Avicennia however, the successive cambia seem to have a more complex organisation. This study aimed (i) at understanding the development of successive cambia by giving a three-dimensional description of the hydraulic architecture of Avicennia and (ii) at unveiling the possible adaptive nature of growth by successive cambia through a study of the ecological distribution of plant species with concentric internal phloem.
Results
Avicennia had a complex network of non-cylindrical wood patches, the complexity of which increased with more stressful ecological conditions. As internal phloem has been suggested to play a role in water storage and embolism repair, the spatial organisation of Avicennia wood could provide advantages in the ecologically stressful conditions species of this mangrove genus are growing in. Furthermore, we could observe that 84.9% of the woody shrub and tree species with concentric internal phloem occurred in either dry or saline environments strengthening the hypothesis that successive cambia provide the necessary advantages for survival in harsh environmental conditions.
Conclusions
Successive cambia are an ecologically important characteristic, which seems strongly related with water-limited environments.
doi:10.1371/journal.pone.0016558
PMCID: PMC3031581  PMID: 21304983
2.  A Patchy Growth via Successive and Simultaneous Cambia: Key to Success of the Most Widespread Mangrove Species Avicennia marina? 
Annals of Botany  2007;101(1):49-58.
Background and Aims
Secondary growth via successive cambia has been intriguing researchers for decades. Insight into the mechanism of growth layer formation is, however, limited to the cellular level. The present study aims to clarify secondary growth via successive cambia in the mangrove species Avicennia marina on a macroscopic level, addressing the formation of the growth layer network as a whole. In addition, previously suggested effects of salinity on growth layer formation were reconsidered.
Methods
A 1-year cambial marking experiment was performed on 80 trees from eight sites in two mangrove forests in Kenya. Environmental (soil water salinity and nutrients, soil texture, inundation frequency) and tree characteristics (diameter, height, leaf area index) were recorded for each site. Both groups of variables were analysed in relation to annual number of growth layers, annual radial increment and average growth layer width of stem discs.
Key Results
Between trees of the same site, the number of growth layers formed during the 1-year study period varied from only part of a growth layer up to four growth layers, and was highly correlated to the corresponding radial increment (0–5 mm year–1), even along the different sides of asymmetric stem discs. The radial increment was unrelated to salinity, but the growth layer width decreased with increasing salinity and decreasing tree height.
Conclusions
A patchy growth mechanism was proposed, with an optimal growth at distinct moments in time at different positions around the stem circumference. This strategy creates the opportunity to form several growth layers simultaneously, as observed in 14 % of the studied trees, which may optimize tree growth under favourable conditions. Strong evidence was provided for a mainly endogenous trigger controlling cambium differentiation, with an additional influence of current environmental conditions in a trade-off between hydraulic efficiency and mechanical stability.
doi:10.1093/aob/mcm280
PMCID: PMC2701843  PMID: 18006508
Avicenia marina; cambial marking; mangrove; phloem; salinity; secondary growth; successive cambia; xylem

Results 1-2 (2)