PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Cysteine Methylation Controls Radical Generation in the Cfr Radical AdoMet rRNA Methyltransferase 
PLoS ONE  2013;8(7):e67979.
The ‘radical S-adenosyl-L-methionine (AdoMet)’ enzyme Cfr methylates adenosine 2503 of the 23S rRNA in the peptidyltransferase centre (P-site) of the bacterial ribosome. This modification protects host bacteria, notably methicillin-resistant Staphylococcus aureus (MRSA), from numerous antibiotics, including agents (e.g. linezolid, retapamulin) that were developed to treat such organisms. Cfr contains a single [4Fe-4S] cluster that binds two separate molecules of AdoMet during the reaction cycle. These are used sequentially to first methylate a cysteine residue, Cys338; and subsequently generate an oxidative radical intermediate that facilitates methyl transfer to the unreactive C8 (and/or C2) carbon centres of adenosine 2503. How the Cfr active site, with its single [4Fe-4S] cluster, catalyses these two distinct activities that each utilise AdoMet as a substrate remains to be established. Here, we use absorbance and electron paramagnetic resonance (EPR) spectroscopy to investigate the interactions of AdoMet with the [4Fe-4S] clusters of wild-type Cfr and a Cys338 Ala mutant, which is unable to accept a methyl group. Cfr binds AdoMet with high (∼ 10 µM) affinity notwithstanding the absence of the RNA cosubstrate. In wild-type Cfr, where Cys338 is methylated, AdoMet binding leads to rapid oxidation of the [4Fe-4S] cluster and production of 5'-deoxyadenosine (DOA). In contrast, while Cys338 Ala Cfr binds AdoMet with equivalent affinity, oxidation of the [4Fe-4S] cluster is not observed. Our results indicate that the presence of a methyl group on Cfr Cys338 is a key determinant of the activity of the enzyme towards AdoMet, thus enabling a single active site to support two distinct modes of AdoMet cleavage.
doi:10.1371/journal.pone.0067979
PMCID: PMC3702613  PMID: 23861844
2.  The Rhodanese Domain of ThiI Is Both Necessary and Sufficient for Synthesis of the Thiazole Moiety of Thiamine in Salmonella enterica ▿  
Journal of Bacteriology  2011;193(18):4582-4587.
In Salmonella enterica, ThiI is a bifunctional enzyme required for the synthesis of both the 4-thiouridine modification in tRNA and the thiazole moiety of thiamine. In 4-thiouridine biosynthesis, ThiI adenylates the tRNA uridine and transfers sulfur from a persulfide formed on the protein. The role of ThiI in thiazole synthesis is not yet well understood. Mutational analysis described here found that ThiI residues required for 4-thiouridine synthesis were not involved in thiazole biosynthesis. The data further showed that the C-terminal rhodanese domain of ThiI was sufficient for thiazole synthesis in vivo. Together, these data support the conclusion that sulfur mobilization in thiazole synthesis is mechanistically distinct from that in 4-thiouridine synthesis and suggest that functional annotation of ThiI in genome sequences should be readdressed. Nutritional studies described here identified an additional cysteine-dependent mechanism for sulfur mobilization to thiazole that did not require ThiI, IscS, SufS, or glutathione. The latter mechanism may provide insights into the chemistry used for sulfur mobilization to thiazole in organisms that do not utilize ThiI.
doi:10.1128/JB.05325-11
PMCID: PMC3165671  PMID: 21724998
3.  A real-time assay for CpG-specific cytosine-C5 methyltransferase activity 
Nucleic Acids Research  2010;38(9):e107.
A real-time assay for CpG-specific cytosine-C5 methyltransferase activity has been developed. The assay applies a break light oligonucleotide in which the methylation of an unmethylated 5′-CG-3′ site is enzymatically coupled to the development of a fluorescent signal. This sensitive assay can measure rates of DNA methylation down to 0.34 ± 0.06 fmol/s. The assay is reproducible, with a coefficient of variation over six independent measurements of 4.5%. Product concentration was accurately measured from fluorescence signals using a linear calibration curve, which achieved a goodness of fit (R2) above 0.98. The oligonucleotide substrate contains three C5-methylated cytosine residues and one unmethylated 5′-CG-3′ site. Methylation yields an oligonucleotide containing the optimal substrate for the restriction enzyme GlaI. Cleavage of the fully methylated oligonucleotide leads to separation of fluorophore from quencher, giving a proportional increase in fluorescence. This method has been used to assay activity of DNMT1, the principle maintenance methyltransferase in human cells, and for the kinetic characterization of the bacterial cytosine-C5 methyltransferase M.SssI. The assay has been shown to be suitable for the real-time monitoring of DNMT1 activity in a high-throughput format, with low background signal and the ability to obtain linear rates of methylation over long periods, making this a promising method of high-throughput screening for inhibitors.
doi:10.1093/nar/gkq047
PMCID: PMC2875032  PMID: 20139415
4.  Kinetic Analysis of Yersinia pestis DNA Adenine Methyltransferase Activity Using a Hemimethylated Molecular Break Light Oligonucleotide 
PLoS ONE  2007;2(8):e801.
Background
DNA adenine methylation plays an important role in several critical bacterial processes including mismatch repair, the timing of DNA replication and the transcriptional control of gene expression. The dependence of bacterial virulence on DNA adenine methyltransferase (Dam) has led to the proposal that selective Dam inhibitors might function as broad spectrum antibiotics.
Methodology/Principal Findings
Herein we report the expression and purification of Yersinia pestis Dam and the development of a continuous fluorescence based assay for DNA adenine methyltransferase activity that is suitable for determining the kinetic parameters of the enzyme and for high throughput screening against potential Dam inhibitors. The assay utilised a hemimethylated break light oligonucleotide substrate containing a GATC methylation site. When this substrate was fully methylated by Dam, it became a substrate for the restriction enzyme DpnI, resulting in separation of fluorophore (fluorescein) and quencher (dabcyl) and therefore an increase in fluorescence. The assays were monitored in real time using a fluorescence microplate reader in 96 well format and were used for the kinetic characterisation of Yersinia pestis Dam, its substrates and the known Dam inhibitor, S-adenosylhomocysteine. The assay has been validated for high throughput screening, giving a Z-factor of 0.71±0.07 indicating that it is a sensitive assay for the identification of inhibitors.
Conclusions/Significance
The assay is therefore suitable for high throughput screening for inhibitors of DNA adenine methyltransferases and the kinetic characterisation of the inhibition.
doi:10.1371/journal.pone.0000801
PMCID: PMC1949145  PMID: 17726531
5.  An analysis of the feasibility of short read sequencing 
Nucleic Acids Research  2005;33(19):e171.
Several methods for ultra high-throughput DNA sequencing are currently under investigation. Many of these methods yield very short blocks of sequence information (reads). Here we report on an analysis showing the level of genome sequencing possible as a function of read length. It is shown that re-sequencing and de novo sequencing of the majority of a bacterial genome is possible with read lengths of 20–30 nt, and that reads of 50 nt can provide reconstructed contigs (a contiguous fragment of sequence data) of 1000 nt and greater that cover 80% of human chromosome 1.
doi:10.1093/nar/gni170
PMCID: PMC1278949  PMID: 16275781

Results 1-5 (5)