Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Deletion of chloroplast NADPH-dependent thioredoxin reductase results in inability to regulate starch synthesis and causes stunted growth under short-day photoperiods 
Journal of Experimental Botany  2013;64(12):3843-3854.
Plastid-localized NADPH-dependent thioredoxin reductase C (NTRC) is a unique NTR enzyme containing both reductase and thioredoxin domains in a single polypeptide. Arabidopsis thaliana NTRC knockout lines (ntrc) show retarded growth, especially under short-day (SD) photoperiods. This study identified chloroplast processes that accounted for growth reduction in SD-acclimated ntrc. The strongest reduction in ntrc growth occurred under photoperiods with nights longer than 14h, whereas knockout of the NTRC gene did not alter the circadian-clock-controlled growth of Arabidopsis. Lack of NTRC modulated chloroplast reactive oxygen species (ROS) metabolism, but oxidative stress was not the primary cause of retarded growth of SD-acclimated ntrc. Scarcity of starch accumulation made ntrc leaves particularly vulnerable to photoperiods with long nights. Direct interaction of NTRC and ADP-glucose pyrophosphorylase, a key enzyme in starch synthesis, was confirmed by yeast two-hybrid analysis. The ntrc line was not able to maximize starch synthesis during the light period, which was particularly detrimental under SD conditions. Acclimation of Arabidopsis to SD conditions also involved an inductive rise of ROS production in illuminated chloroplasts that was not counterbalanced by the activation of plastidial anti-oxidative systems. It is proposed that knockout of NTRC challenges redox regulation of starch synthesis, resulting in stunted growth of the mutant lines acclimated to the SD photoperiod.
PMCID: PMC3745738  PMID: 23881397
ADP-glucose pyrophosphorylase; Arabidopsis thaliana; chloroplast; NTRC; ROS; starch; thioredoxins.
2.  Changing the light environment: chloroplast signalling and response mechanisms 
Light is an essential environmental factor required for photosynthesis, but it also mediates signals to control plant development and growth and induces stress tolerance. The photosynthetic organelle (chloroplast) is a key component in the signalling and response network in plants. This theme issue of Philosophical Transactions of the Royal Society of London B: Biology provides updates, highlights and summaries of the most recent findings on chloroplast-initiated signalling cascades and responses to environmental changes, including light and biotic stress. Besides plant molecular cell biology and physiology, the theme issue includes aspects from the cross-disciplinary fields of environmental adaptation, ecology and agronomy.
PMCID: PMC3949385  PMID: 24591707
3.  Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions 
Plants have adopted a number of mechanisms to restore redox homeostasis in the chloroplast under fluctuating light conditions in nature. Chloroplast thioredoxin systems are crucial components of this redox network, mediating environmental signals to chloroplast proteins. In the reduced state, thioredoxins control the structure and function of proteins by reducing disulfide bridges in the redox active site of a protein. Subsequently, an oxidized thioredoxin is reduced by a thioredoxin reductase, the two enzymes together forming a thioredoxin system. Plant chloroplasts have versatile thioredoxin systems, including two reductases dependent on ferredoxin and NADPH as reducing power, respectively, several types of thioredoxins, and the system to deliver thiol redox signals to the thylakoid membrane and lumen. Light controls the activity of chloroplast thioredoxin systems in two ways. First, light reactions activate the thioredoxin systems via donation of electrons to oxidized ferredoxin and NADP+, and second, light induces production of reactive oxygen species in chloroplasts which deactivate the components of the thiol redox network. The diversity and partial redundancy of chloroplast thioredoxin systems enable chloroplast metabolism to rapidly respond to ever-changing environmental conditions and to raise plant fitness in natural growth conditions.
PMCID: PMC3949389  PMID: 24591711
chloroplast; thioredoxin; redox network; fluctuating light; reactive oxygen species; environmental signals
4.  Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains 
Plant chloroplasts have versatile thioredoxin systems including two thioredoxin reductases and multiple types of thioredoxins. Plastid-localized NADPH-dependent thioredoxin reductase (NTRC) contains both reductase (NTRd) and thioredoxin (TRXd) domains in a single polypeptide and forms homodimers. To study the action of NTRC and NTRC domains in vivo, we have complemented the ntrc knockout line of Arabidopsis with the wild type and full-length NTRC genes, in which 2-Cys motifs either in NTRd, or in TRXd were inactivated. The ntrc line was also transformed either with the truncated NTRd or TRXd alone. Overexpression of wild-type NTRC promoted plant growth by increasing leaf size and biomass yield of the rosettes. Complementation of the ntrc line with the full-length NTRC gene containing an active reductase but an inactive TRXd, or vice versa, recovered wild-type chloroplast phenotype and, partly, rosette biomass production, indicating that the NTRC domains are capable of interacting with other chloroplast thioredoxin systems. Overexpression of truncated NTRd or TRXd in ntrc background did not restore wild-type phenotype. Modeling of the three-dimensional structure of the NTRC dimer indicates extensive interactions between the NTR domains and the TRX domains further stabilize the dimeric structure. The long linker region between the NTRd and TRXd, however, allows flexibility for the position of the TRXd in the dimer. Supplementation of the TRXd in the NTRC homodimer model by free chloroplast thioredoxins indicated that TRXf is the most likely partner to interact with NTRC. We propose that overexpression of NTRC promotes plant biomass yield both directly by stimulation of chloroplast biosynthetic and protective pathways controlled by NTRC and indirectly via free chloroplast thioredoxins. Our data indicate that overexpression of chloroplast thiol redox-regulator has a potential to increase biofuel yield in plant and algal species suitable for sustainable bioenergy production.
PMCID: PMC3792407  PMID: 24115951
chloroplast; thioredoxins; NTRC; 3-D model; carbon metabolism; redox regulation; overexpression; biomass yield
5.  Retrograde signaling from functionally heterogeneous plastids 
Structural and functional components of chloroplast are encoded by genes localized both to nuclear and plastid genomes of plant cell. Development from etioplasts to chloroplasts is triggered by light receptors that activate the expression of photosynthesis-associated nuclear genes (PhaNGs). In addition to photoreceptor-mediated pathways, retrograde signals from the chloroplast to the nucleus activate or repress the expression of nuclear genes involved in acclimatory or stress responses in plant leaves. A plant mesophyll cell contains up to 100 chloroplasts that function autonomously, raising intriguing questions about homogeneity and coordination of retrograde signals transmitted from chloroplast to nucleus. We have previously demonstrated that the knockout of the chloroplast regulatory protein, chloroplast NADPH-dependent thioredoxin reductase (NTRC) leads to a heterogeneous population of chloroplasts with a range of different functional states. The heterogeneous chloroplast population activates both redox-dependent and undifferentiated plastid-generated retrograde signaling pathways in the mutant leaves. Transcriptome data from the ntrc knockout lines suggest that the induction of the redox-dependent signaling pathway depends on light conditions and leads to activation of stress-responsive gene expression. Analysis of mutants in different developmental stages allows to dissect signals from normal and anomalous chloroplasts. Thus, the signals derived from anomalous chloroplasts repress expression of PhaNGs as well as genes associated with light receptor signaling and differentiation of stomata, implying interaction between retrograde pathways and plant development. Analysis of the nuclear gene expression in mutants of retrograde signaling pathways in ntrc background would reveal the components that mediate signals generated from heterogeneous plastids to nucleus.
PMCID: PMC3526119  PMID: 23267363
light signaling; redox signals; nuclear gene expression; stress; differentiation; NTRC
6.  Coordination of Plastid and Light Signaling Pathways upon Development of Arabidopsis Leaves under Various Photoperiods 
Molecular Plant  2011;5(4):799-816.
Plants synchronize their cellular and physiological functions according to the photoperiod (the length of the light period) in the cycle of 24 h. Photoperiod adjusts several traits in the plant life cycle, including flowering and senescence in annuals and seasonal growth cessation in perennials. Photoperiodic development is controlled by the coordinated action of photoreceptors and the circadian clock. During the past 10 years, remarkable progress has been made in understanding the molecular mechanism of the circadian clock, especially with regard to the transition of Arabidopsis from the vegetative growth to the reproductive phase. Besides flowering photoperiod also modifies plant photosynthetic structures and traits. Light signals controlling biogenesis of chloroplasts and development of leaf photosynthetic structures are perceived both by photoreceptors and in chloroplasts. In this review, we provide evidence suggesting that the photoperiodic development of Arabidopsis leaves mimics the acclimation of plant to various light intensities. Furthermore, the chloroplast-to-nucleus retrograde signals that adjust acclimation to light intensity are proposed to contribute also to the signaling pathways that control photoperiodic acclimation of leaves.
PMCID: PMC3399700  PMID: 22199239
acclimation; chloroplast biology; circadian clock; leaf/vegetative development; light signaling; photomorphogenesis; plastid signaling
7.  Implication of chlorophyll biosynthesis on chloroplast-to-nucleus retrograde signaling 
Plant Signaling & Behavior  2009;4(6):545-547.
The biogenesis and function of chloroplast are controlled both by anterograde mechanisms involving nuclear-encoded proteins targeted to chloroplast and by retrograde signals from plastid to nucleus contributing to regulation of nuclear gene expression. A number of experimental evidences support the implication of chlorophyll biosynthesis intermediates on the retrograde signaling, albeit an earlier-postulated direct link between accumulation of chlorophyll intermediates and changes in nuclear gene expression has recently been challenged. By characterization of Arabidopsis mutants lacking the chloroplast localized NADPH-thioredoxin reductase (NTRC) we have recently proposed that imbalanced activity of chlorophyll biosynthesis in developing cells modifies the chloroplast signals leading to alterations in nuclear gene expression. These signals appear to initiate from temporal perturbations in the flux through the pathway from protoporphyrin to protochlorophyllide rather than from the accumulation of a single intermediate of the tetrapyr-role pathway.
PMCID: PMC2688308  PMID: 19816147
chloroplast biogenesis; NADPH-thioredoxin reductase; porphyrins; ROS; signaling; tetrapyrrole; thioredoxin

Results 1-7 (7)