Search tips
Search criteria

Results 1-25 (36)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Caspase activity is not required for the mitotic checkpoint or mitotic slippage in human cells 
Molecular Biology of the Cell  2011;22(14):2470-2479.
Live-cell studies show that inhibiting or depleting caspases, whether alone, in combination, or in toto, has no effect on the duration or fidelity of mitosis in nontransformed human cells, nor does it delay slippage when the mitotic checkpoint cannot be satisfied.
 Biochemical studies suggest that caspase activity is required for a functional mitotic checkpoint (MC) and mitotic slippage. To test this directly, we followed nontransformed human telomerase immortalized human retinal pigment epithelia (RPE-1) cells through mitosis after inhibiting or depleting selected caspases. We found that inhibiting caspases individually, in combination, or in toto did not affect the duration or fidelity of mitosis in otherwise untreated cells. When satisfaction of the MC was prevented with 500 nM nocodazole or 2.5 μM dimethylenastron (an Eg5 inhibitor), 92–100% of RPE-1 cells slipped from mitosis in the presence of pan-caspase inhibitors or after simultaneously depleting caspase-3 and -9, and they did so with the same kinetics (∼21–22 h) as after treatment with nocodazole or Eg5 inhibitors alone. Surprisingly, inhibiting or depleting caspase-9 alone doubled the number of nocodazole-treated, but not Eg5-inhibited, cells that died in mitosis. In addition, inhibiting or depleting caspase-9 and -3 together accelerated the rate of slippage ∼40% (to ∼13–15 h). Finally, nocodazole-treated cells that recently slipped through mitosis in the presence or absence of pan-caspase inhibitors contained numerous BubR1 foci in their nuclei. From these data, we conclude that caspase activity is not required for a functional MC or for mitotic slippage.
PMCID: PMC3135473  PMID: 21613548
2.  P38 Mitogen-activated Protein Kinase Activity Is Required during Mitosis for Timely Satisfaction of the Mitotic Checkpoint But Not for the Fidelity of Chromosome Segregation 
Molecular Biology of the Cell  2010;21(13):2150-2160.
We find that in the absence of p38 activity, human cells form longer spindles on which mitotic checkpoint satisfaction is transiently delayed. However, the cells ultimately divide normally. We conclude that normal p38 activity is required for the timely attachment of kinetochores to the spindle, but not for the fidelity of mitosis.
Although p38 activity is reported to be required as cells enter mitosis for proper spindle assembly and checkpoint function, its role during the division process remains controversial in lieu of direct data. We therefore conducted live cell studies to determine the effect on mitosis of inhibiting or depleting p38. We found that in the absence of p38 activity the duration of mitosis is prolonged by ∼40% in nontransformed human RPE-1, ∼80% in PtK2 (rat kangaroo), and ∼25% in mouse cells, and this prolongation leads to an elevated mitotic index. However, under this condition chromatid segregation and cytokinesis are normal. Using Mad2/YFP-expressing cells, we show the prolongation of mitosis in the absence of p38 activity is directly due to a delay in satisfying the mitotic checkpoint. Inhibiting p38 did not affect the rate of chromosome motion; however, it did lead to the formation of significantly (10%) longer metaphase spindles. From these data we conclude that normal p38 activity is required for the timely stable attachment of all kinetochores to spindle microtubules, but not for the fidelity of the mitotic process. We speculate that p38 activity promotes timely checkpoint satisfaction by indirectly influencing those motor proteins (e.g., Klp10, Klp67A) involved in regulating the dynamics of kinetochore microtubule ends.
PMCID: PMC2893980  PMID: 20462950
3.  Cells satisfy the mitotic checkpoint in Taxol, and do so faster in concentrations that stabilize syntelic attachments 
The Journal of Cell Biology  2009;186(5):675-684.
Mitosis happens faster in Taxol-treated cells because Taxol-stabilized kinetochores get through the checkpoint faster.
To determine why the duration of mitosis (DM) is less in Taxol than in nocodazole or Eg5 inhibitors we studied the relationship between Taxol concentration, the DM, and the mitotic checkpoint. We found that unlike for other spindle poisons, in Taxol the DM becomes progressively shorter as the concentration surpasses ∼0.5 µM. Studies on RPE1 and PtK2 expressing GFP/cyclin B or YFP/Mad2 revealed that cells ultimately satisfy the checkpoint in Taxol and do so faster at concentrations >0.5 µM. Inhibiting the aurora-B kinase in Taxol-treated RPE1 cells accelerates checkpoint satisfaction by stabilizing syntelic kinetochore attachments and reduces the DM to ∼1.5 h regardless of drug concentration. A similar stabilization of syntelic attachments by Taxol itself appears responsible for accelerated checkpoint satisfaction at concentrations >0.5 µM. Our results provide a novel conceptual framework for how Taxol prolongs mitosis and caution against using it in checkpoint studies. They also offer an explanation for why some cells are more sensitive to lower versus higher Taxol concentrations.
PMCID: PMC2742195  PMID: 19720871
4.  The Ability to Survive Mitosis in the Presence of Microtubule Poisons Differs Significantly Between Human Nontransformed (RPE-1) and Cancer (U2OS, HeLa) Cells 
We used live cell imaging to compare the fate of human nontransformed (RPE-1) and cancer (HeLa, U2OS) cells as they entered mitosis in nocodazole or taxol. In the same field, and in either drug, a cell in all lines could die in mitosis, exit mitosis and die within 10 h, or exit mitosis and survive ≥10 h. Relative to RPE-1 cells, significantly fewer HeLa or U2OS cells survived mitosis or remained viable after mitosis: in nocodazole concentrations that inhibit spindle microtubule assembly, or in 500 nM taxol, 30% and 27% of RPE-1 cells, respectively, died in or within 10 h of exiting mitosis while 90% and 49% of U2OS and 78% and 81% of HeLa died. This was even true for clinically relevant taxol concentrations (5 nM) which killed 93% and 46%, respectively, of HeLa and U2OS cells in mitosis or within 10 h of escaping mitosis, compared to 1% of RPE-1 cells. Together these data imply that studies using HeLa or U2OS cells, harvested after a prolonged block in mitosis with nocodazole or taxol, are significantly contaminated with dead or dying cells. We also found that the relationship between the duration of mitosis and survival is drug and cell type specific and that lethality is related to the cell type and drug used to prevent satisfaction of the kinetochore attachment checkpoint. Finally, work with a pancaspase inhibitor suggests that the primary apoptotic pathway triggered by nocodazole during mitosis in RPE-1 cells is not active in U2OS cells. Cell Motil. Cytoskeleton 2008.
PMCID: PMC2711993  PMID: 18792104
mitosis; apoptosis; kinetochore attachment checkpoint; mitotic slippage; nocodazole; taxol
5.  Microtubules do not promote mitotic slippage when the spindle assembly checkpoint cannot be satisfied 
The Journal of Cell Biology  2008;182(4):623-629.
When the spindle assembly checkpoint (SAC) cannot be satisfied, cells exit mitosis via mitotic slippage. In microtubule (MT) poisons, slippage requires cyclin B proteolysis, and it appears to be accelerated in drug concentrations that allow some MT assembly. To determine if MTs accelerate slippage, we followed mitosis in human RPE-1 cells exposed to various spindle poisons. At 37°C, the duration of mitosis in nocodazole, colcemid, or vinblastine concentrations that inhibit MT assembly varied from 20 to 30 h, revealing that different MT poisons differentially depress the cyclin B destruction rate during slippage. The duration of mitosis in Eg5 inhibitors, which induce monopolar spindles without disrupting MT dynamics, was the same as in cells lacking MTs. Thus, in the presence of numerous unattached kinetochores, MTs do not accelerate slippage. Finally, compared with cells lacking MTs, exit from mitosis is accelerated over a range of spindle poison concentrations that allow MT assembly because the SAC becomes satisfied on abnormal spindles and not because slippage is accelerated.
PMCID: PMC2518701  PMID: 18710927
6.  Extracellular Signal-regulated Kinase 1/2 Activity Is Not Required in Mammalian Cells during Late G2 for Timely Entry into or Exit from Mitosis 
Molecular Biology of the Cell  2006;17(12):5227-5240.
Extracellular signal-regulated kinase (ERK)1/2 activity is reported to be required in mammalian cells for timely entry into and exit from mitosis (i.e., the G2-mitosis [G2/M] and metaphase-anaphase [M/A] transitions). However, it is unclear whether this involvement reflects a direct requirement for ERK1/2 activity during these transitions or for activating gene transcription programs at earlier stages of the cell cycle. To examine these possibilities, we followed live cells in which ERK1/2 activity was inhibited through late G2 and mitosis. We find that acute inhibition of ERK1/2 during late G2 and through mitosis does not affect the timing of the G2/M or M/A transitions in normal or transformed human cells, nor does it impede spindle assembly, inactivate the p38 stress-activated checkpoint during late G2 or the spindle assembly checkpoint during mitosis. Using CENP-F as a marker for progress through G2, we also show that sustained inhibition of ERK1/2 transiently delays the cell cycle in early/mid-G2 via a p53-dependent mechanism. Together, our data reveal that ERK1/2 activity is required in early G2 for a timely entry into mitosis but that it does not directly regulate cell cycle progression from late G2 through mitosis in normal or transformed mammalian cells.
PMCID: PMC1679686  PMID: 17035635
7.  Topoisomerase II and histone deacetylase inhibitors delay the G2/M transition by triggering the p38 MAPK checkpoint pathway 
The Journal of Cell Biology  2004;166(4):517-526.
When early prophase PtK1 or Indian muntjac cells are exposed to topoisomerase II (topo II) inhibitors that induce little if any DNA damage, they are delayed from entering mitosis. We show that this delay is overridden by inhibiting the p38, but not the ATM, kinase. Treating early prophase cells with hyperosmotic medium or a histone deacetylase inhibitor similarly delays entry into mitosis, and this delay can also be prevented by inhibiting p38. Together, these results reveal that agents or stresses that induce global changes in chromatin topology during G2 delay entry into mitosis, independent of the ATM-mediated DNA damage checkpoint, by activating the p38 MAPK checkpoint. The presence of this pathway obviates the necessity of postulating the existence of multiple “chromatin modification” checkpoints during G2. Lastly, cells that enter mitosis in the presence of topo II inhibitors form metaphase spindles that are delayed in entering anaphase via the spindle assembly, and not the p38, checkpoint.
PMCID: PMC2172207  PMID: 15302851
mitosis; DNA; aclarubicin; merbarone; apicidin; ICRF-193
8.  A new look at kinetochore structure in vertebrate somatic cells using high-pressure freezing and freeze substitution 
Chromosoma  1998;107(6-7):366-375.
Three decades of structural analysis have produced the view that the kinetochore in vertebrate cells is a disk-shaped structure composed of three distinct structural domains. The most prominent of these consists of a conspicuous electron opaque outer plate that is separated by a light-staining electron-translucent middle plate from an inner plate associated with the surface of the pericentric heterochromatin. Spindle microtubules terminate in the outer plate and, in their absence, a conspicuous corona of fine filaments radiates from the cytoplasmic surface of this plate. Here we report for the first time the ultrastructure of kinetochores in untreated and Colcemid-treated vertebrate somatic (PtK1) cells prepared for optimal structural preservation using high-pressure freezing and freeze substitution. In serial thin sections, and electron tomographic reconstructions, the kinetochore appears as a 50–75 nm thick mat of light-staining fibrous material that is directly connected with the more electron-opaque surface of the centromeric heterochromatin. This mat corresponds to the outer plate in conventional preparations, and is surrounded on its cytoplasmic surface by a conspicuous 100–150 nm wide zone that excludes ribosomes and other cytoplasmic components. High magnification views of this zone reveal that it contains a loose network of light-staining, thin (<9 nm diameter) fibers that are analogous to the corona fibers in conventional preparations. Unlike the chromosome arms, which appear uniformly electron opaque, the chromatin in the primary constriction appears mottled. Since the middle plate is not visible in these kinetochore preparations this feature is likely an artifact produced by extraction and coagulation during conventional fixation and/or dehydration procedures.
PMCID: PMC2905855  PMID: 9914368
9.  Mitosis: Too Much of a Good Thing (Can Be Bad) 
Current biology : CB  2009;19(22):R1032-R1034.
Recent studies reveal that the precise regulation of microtubule dynamics is essential for an error-free mitosis. Kinetochore microtubule attachments that are too stable increase the rate of chromosome mis-segregation, a leading cause of chromosomal instability in tumors.
PMCID: PMC2891095  PMID: 19948139
10.  The nature of cell-cycle checkpoints: facts and fallacies 
Journal of Biology  2009;8(10):88.
The concept of checkpoint controls revolutionized our understanding of the cell cycle. Here we revisit the defining features of checkpoints and argue that failure to properly appreciate the concept is leading to misinterpretation of experimental results. We illustrate, using the mitotic checkpoint, problems that can arise from a failure to respect strict definitions and precise terminology.
PMCID: PMC2790835  PMID: 19930621
11.  The Small Organic Compound HMN-176 Delays Satisfaction of the Spindle Assembly Checkpoint by Inhibiting Centrosome-Dependent Microtubule Nucleation 
Molecular cancer therapeutics  2009;8(3):592-601.
HMN-176 is a potential new cancer therapeutic known to retard the proliferation of tumor cell lines. Here we show this compound inhibits meiotic spindle assembly in surf clam oocytes and delays satisfaction of the spindle assembly checkpoint in human somatic cells by inducing the formation of short and/or multipolar spindles. HMN-176 does not affect centrosome assembly, nuclear envelope breakdown, or other aspects of meiotic or mitotic progression, nor does it affect the kinetics of Spisula or mammalian microtubule (MT) assembly in vitro. Notably, HMN-176 inhibits the formation of centrosome-nucleated MTs (i.e., asters) in Spisula oocytes and oocyte extracts, as well as from isolated Spisula or mammalian centrosomes in vitro. Together these results reveal that HMN-176 is a first-in-class anti-centrosome drug that inhibits proliferation, at least in part, by disrupting centrosome-mediated MT assembly during mitosis.
PMCID: PMC2717217  PMID: 19258425
HMN-176; centrosome; microtubule; Spisula
12.  The ultrastructure of the kinetochore and kinetochore fiber in Drosophila somatic cells 
Chromosoma  2006;115(6):469-480.
Drosophila melanogaster is a widely used model organism for the molecular dissection of mitosis in animals. However, despite the popularity of this system, no studies have been published on the ultrastructure of Drosophila kinetochores and kinetochore fibers (K-fibers) in somatic cells. To amend this situation, we used correlative light (LM) and electron microscopy (EM) to study kinetochores in cultured Drosophila S2 cells during metaphase, and after colchicine treatment to depolymerize all microtubules (MTs). We find that the structure of attached kinetochores in S2 cells is indistinct, consisting of an amorphous inner zone associated with a more electron-dense peripheral surface layer that is approximately 40–50 nm thick. On average, each S2 kinetochore binds 11±2 MTs, in contrast to the 4–6 MTs per kinetochore reported for Drosophila spermatocytes. Importantly, nearly all of the kinetochore MT plus ends terminate in the peripheral surface layer, which we argue is analogous to the outer plate in vertebrate kinetochores. Our structural observations provide important data for assessing the results of RNAi studies of mitosis, as well as for the development of mathematical modelling and computer simulation studies in Drosophila and related organisms.
PMCID: PMC2747472  PMID: 16909258
13.  Mitotic Checkpoint Slippage in Humans Occurs via Cyclin B Destruction in the Presence of an Active Checkpoint 
Current biology : CB  2006;16(12):1194-1200.
In the presence of unattached/weakly attached kinetochores, the spindle assembly checkpoint (SAC) delays exit from mitosis by preventing the anaphase-promoting complex (APC)-mediated proteolysis of cyclin B, a regulatory subunit of cyclin-dependent kinase 1 (Cdk1). Like all checkpoints, the SAC does not arrest cells permanently, and escape from mitosis in the presence of an unsatisfied SAC requires that cyclin B/Cdk1 activity be inhibited. In yeast [1–5], and likely Drosophila [6–8], this occurs through an “adaptation” process involving an inhibitory phosphorylation on Cdk1 and/or activation of a cyclin-dependent kinase inhibitor (Cdki). The mechanism that allows vertebrate cells to escape mitosis when the SAC cannot be satisfied is unknown. To explore this issue, we conducted fluorescence microscopy studies on rat kangaroo (PtK) and human (RPE1) cells dividing in the presence of nocodazole. We find that in the absence of microtubules (MTs), escape from mitosis occurs in the presence of an active SAC and requires cyclin B destruction. We also find that cyclin B is progressively destroyed during the block by a proteasome-dependent mechanism. Thus, vertebrate cells do not adapt to the SAC. Rather, our data suggest that in normal cells, the SAC cannot prevent a slow but continuous degradation of cyclin B that ultimately drives the cell out of mitosis.
PMCID: PMC2749311  PMID: 16782009
14.  Drosophila CLASP is required for the incorporation of microtubule subunits into fluxing kinetochore fibres 
Nature cell biology  2004;7(1):42-47.
The motion of a chromosome during mitosis is mediated by a bundle of microtubules, termed a kinetochore fibre (K-fibre), which connects the kinetochore of the chromosome to a spindle pole. Once formed, mature K-fibres maintain a steady state length because the continuous addition of microtubule subunits onto microtubule plus ends at the kinetochore is balanced by their removal at their minus ends within the pole. This condition is known as ‘microtubule poleward flux’1. Chromosome motion and changes in position are then driven by changes in K-fibre length, which in turn are controlled by changes in the rates at which microtubule subunits are added at the kinetochore and/or removed from the pole2. A key to understanding the role of flux in mitosis is to identify the molecular factors that drive it. Here we use Drosophila melanogaster S2 cells expressing α-tubulin tagged with green fluorescent protein, RNA interference, laser microsurgery and photobleaching to show that the kinetochore protein MAST/Orbit — the single CLASP orthologue in Drosophila — is an essential component for microtubule subunit incorporation into fluxing K-fibres.
PMCID: PMC2596653  PMID: 15592460
15.  Imaging the division process in living tissue culture cells 
Methods (San Diego, Calif.)  2006;38(1):2-16.
We detail some of the pitfalls encountered when following live cultured somatic cells by light microscopy during mitosis. Principle difficulties in this methodology arise from the necessity to compromise between maintaining the health of the cell while achieving the appropriate temporal and spatial resolutions required for the study. Although the quality of the data collected from fixed cells is restricted only by the quality of the imaging system and the optical properties of the specimen, the major limiting factor when viewing live cells is radiation damage induced during illumination. We discuss practical considerations for minimizing this damage, and for maintaining the general health of the cell, while it is being followed by multi-mode or multi-dimensional light microscopy.
PMCID: PMC2590767  PMID: 16343936
16.  Comment on “A Centrosome-Independent Role for γ-TuRC Proteins in the Spindle Assembly Checkpoint” 
Science (New York, N.Y.)  2007;316(5827):982.
Müller et al. (Reports, 27 October 2006, p. 654) showed that inhibition of the γ-tubulin ring complex (γ-TuRC) activates the spindle assembly checkpoint (SAC), which led them to suggest that γ-TuRC proteins play molecular roles in SAC activation. Because γ-TuRC inhibition leads to pleiotropic spindle defects, which are well known to activate kinetochore-derived checkpoint signaling, we believe that this conclusion is premature.
PMCID: PMC2590763  PMID: 17510347
17.  Extra centrosomes and/or chromosomes prolong mitosis in human cells 
Nature cell biology  2008;10(6):748-751.
Using laser microsurgery and cell fusion we have explored how additional centrosomes and/or chromosomes influence the duration of mitosis in human cells. We find that doubling the chromosome number adds ∼10 minutes to a 20 minute division while doubling the number of centrosomes adds ∼30 minutes more, and extra centrosomes and/or chromosomes prolong mitosis by delaying satisfaction of the spindle assembly checkpoint. Thus mitosis can be prolonged by non genetic means and extra chromosomes and centrosomes likely contribute to the elevated mitotic index seen in many tumors.
PMCID: PMC2430725  PMID: 18469805
mitosis; centrosomes; chromosomes; cancer; spindle assembly checkpoint
18.  Kinetochore fiber formation in animal somatic cells: dueling mechanisms come to a draw 
Chromosoma  2005;114(5):310-318.
The attachment to and movement of a chromosome on the mitotic spindle are mediated by the formation of a bundle of microtubules (MTs) that tethers the kinetochore on the chromosome to a spindle pole. The origin of these “kinetochore fibers” (K fibers) has been investigated for over 125 years. As noted in 1944 by Schrader [Mitosis, Columbia University Press, New York, 110 pp.], there are three possible ways to form a K fiber: (a) it grows from the pole until it contacts the kinetochore, (b) it grows directly from the kinetochore, or (c) it forms as a result of an interaction between the pole and the chromosome. Since Schrader's time, it has been firmly established that K fibers in centrosome-containing animal somatic cells form as kinetochores capture MTs growing from the spindle pole (route a). It is now similarly clear that in cells lacking centrosomes, including higher plants and many animal oocytes, K fibers “self-assemble” from MTs generated by the chromosomes (route b). Can animal somatic cells form K fibers in the absence of centrosomes by the “self-assembly” pathway? In 2000, the answer to this question was shown to be a resounding “yes.” With this result, the next question became whether the presence of a centrosome normally suppresses K fiber self-assembly or if this route works concurrently with centrosome-mediated K-fiber formation. This question, too, has recently been answered: observations on untreated live animal cells expressing green fluorescent protein-tagged tubulin clearly show that kinetochores can nucleate the formation of their associated MTs in a unique manner in the presence of functional centrosomes. The concurrent operation of these two “dueling” routes for forming K fibers in animal cells helps explain why the attachment of kinetochores and the maturation of K fibers occur as quickly as they do on all chromosomes within a cell.
PMCID: PMC2570760  PMID: 16270218
19.  Laser Microsurgery in the GFP Era: A Cell Biologist's Perspective 
Methods in cell biology  2007;82:239-266.
Modern biology is based largely on a reductionistic “dissection” approach—most cell biologists try to determine how complex biological systems work by removing their individual parts and studying the effects of this removal on the system. A variety of enzymatic and mechanical methods have been developed to dissect large cell assemblies like tissues and organs. Further, individual proteins can be inactivated or removed within a cell by genetic manipulations (e.g., RNAi or gene knockouts). However, there is a growing demand for tools that allow intracellular manipulations at the level of individual organelles. Laser microsurgery is ideally suited for this purpose and the popularity of this approach is on the rise among cell biologists. In this chapter, we review some of the applications for laser microsurgery at the subcellular level and describe practical requirements for laser microsurgery instrumentation demanded in the field. We also outline a relatively inexpensive but versatile laser microsurgery workstation that is being used in our laboratory. Our major thesis is that the limitations of the technology are no longer at the level of the laser, microscope, or software, but instead only in defining creative questions and in visualizing the target to be destroyed.
At last in an incredible manner he [Archimedes] burned up the whole Roman fleet. For by tilting a kind of mirror toward the sun he concentrated the sun's beam upon it; and owing to the thickness and smoothness of the mirror he ignited the air from this beam and kindled a great flame, the whole of which he directed upon the ships that lay at anchor in the path of the fire, until he consumed them all.1
PMCID: PMC2570757  PMID: 17586259
20.  Kinetochore Dynein Is Required for Chromosome Motion and Congression Independent of the Spindle Checkpoint 
Current biology : CB  2007;17(11):973-980.
During mitosis, the motor molecule cytoplasmic dynein plays key direct and indirect roles in organizing microtubules (MTs) into a functional spindle. At this time, dynein is also recruited to kinetochores, but its role or roles at these organelles remain vague, partly because inhibiting dynein globally disrupts spindle assembly [1-4]. However, dynein can be selectively depleted from kinetochores by disruption of ZW10 [5], and recent studies with this approach conclude that kinetochore-associated dynein (KD) functions to silence the spindle-assembly checkpoint (SAC) [6]. Here we use dynein-antibody microinjection and the RNAi of ZW10 to explore the role of KD in chromosome behavior during mitosis in mammals. We find that depleting or inhibiting KD prevents the rapid poleward motion of attaching kinetochores but not kinetochore fiber (K fiber) formation. However, after kinetochores attach to the spindle, KD is required for stabilizing kinetochore MTs, which it probably does by generating tension on the kinetochore, and in its absence, chromosome congression is defective. Finally, depleting KD reduces the velocity of anaphase chromosome motion by ∼40%, without affecting the rate of poleward MT flux. Thus, in addition to its role in silencing the SAC, KD is important for forming and stabilizing K fibers and in powering chromosome motion.
PMCID: PMC2570756  PMID: 17509882
21.  The G2 p38-Mediated Stress-Activated Checkpoint Pathway Becomes Attenuated in Transformed Cells 
Current biology : CB  2007;17(24):2162-2168.
When human cells are stressed during G2, they are delayed from entering mitosis via a checkpoint mediated by the p38 kinase [1-5], and this delay can be modeled by the selective activation of p38 with anisomycin [6, 7]. Here, we report, on the basis of live-cell studies, that 75 nM anisomycin transiently (1 hr) activates p38 which, in turn, rapidly and completely blocks entry into mitosis for at least 4 hr in all primary, telomeraseor spontaneously immortalized (p53+ and pRB+) human cells. However, the same treatment does not delay entry into mitosis in cancer cells, or the delay in entering mitosis is shortened, even though it induces a similar transient and comparable (or stronger) activation of p38. Because the primary substrate of p38, the MK2 kinase, is also transiently (1-2 hr) activated by anisomycin in both normal and cancer cells, checkpoint disruption in transformed cells occurs downstream of MK2. Finally, observations on isogenic lines reveal that the duration of the stress checkpoint is shortened in cells lacking both p53 and pRb and that the constitutive expression of an active H-Ras oncogene in these cells further attenuates the checkpoint via an ERK1/2-dependent manner. Thus, transformation leads to attenuation of the p38-mediated stress checkpoint. This outcome is likely selected for during transformation because it confers the ability to outgrow normal cells under stressful in vitro (culture) or in vivo (tumor) environments. Our data caution against using cancer cells to study how p38 produces a G2 arrest.
PMCID: PMC2570755  PMID: 18060783
22.  Mammalian CLASP1 and CLASP2 Cooperate to Ensure Mitotic Fidelity by Regulating Spindle and Kinetochore Function 
Molecular Biology of the Cell  2006;17(10):4526-4542.
CLASPs are widely conserved microtubule plus-end–tracking proteins with essential roles in the local regulation of microtubule dynamics. In yeast, Drosophila, and Xenopus, a single CLASP orthologue is present, which is required for mitotic spindle assembly by regulating microtubule dynamics at the kinetochore. In mammals, however, only CLASP1 has been directly implicated in cell division, despite the existence of a second paralogue, CLASP2, whose mitotic roles remain unknown. Here, we show that CLASP2 localization at kinetochores, centrosomes, and spindle throughout mitosis is remarkably similar to CLASP1, both showing fast microtubule-independent turnover rates. Strikingly, primary fibroblasts from Clasp2 knockout mice show numerous spindle and chromosome segregation defects that can be partially rescued by ectopic expression of Clasp1 or Clasp2. Moreover, chromosome segregation rates during anaphase A and B are slower in Clasp2 knockout cells, which is consistent with a role of CLASP2 in the regulation of kinetochore and spindle function. Noteworthy, cell viability/proliferation and spindle checkpoint function were not impaired in Clasp2 knockout cells, but the fidelity of mitosis was strongly compromised, leading to severe chromosomal instability in adult cells. Together, our data support that the partial redundancy of CLASPs during mitosis acts as a possible mechanism to prevent aneuploidy in mammals.
PMCID: PMC1635371  PMID: 16914514
23.  Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis 
The Journal of Cell Biology  2004;167(5):831-840.
It is now clear that a centrosome-independent pathway for mitotic spindle assembly exists even in cells that normally possess centrosomes. The question remains, however, whether this pathway only activates when centrosome activity is compromised, or whether it contributes to spindle morphogenesis during a normal mitosis. Here, we show that many of the kinetochore fibers (K-fibers) in centrosomal Drosophila S2 cells are formed by the kinetochores. Initially, kinetochore-formed K-fibers are not oriented toward a spindle pole but, as they grow, their minus ends are captured by astral microtubules (MTs) and transported poleward through a dynein-dependent mechanism. This poleward transport results in chromosome bi-orientation and congression. Furthermore, when individual K-fibers are severed by laser microsurgery, they regrow from the kinetochore outward via MT plus-end polymerization at the kinetochore. Thus, even in the presence of centrosomes, the formation of some K-fibers is initiated by the kinetochores. However, centrosomes facilitate the proper orientation of K-fibers toward spindle poles by integrating them into a common spindle.
PMCID: PMC2172442  PMID: 15569709
24.  Greatwall kinase 
The Journal of Cell Biology  2004;164(4):487-492.
Mutations in the Drosophila gene greatwall cause improper chromosome condensation and delay cell cycle progression in larval neuroblasts. Chromosomes are highly undercondensed, particularly in the euchromatin, but nevertheless contain phosphorylated histone H3, condensin, and topoisomerase II. Cells take much longer to transit the period of chromosome condensation from late G2 through nuclear envelope breakdown. Mutant cells are also subsequently delayed at metaphase, due to spindle checkpoint activity. These mutant phenotypes are not caused by spindle aberrations, by global defects in chromosome replication, or by activation of a caffeine-sensitive checkpoint. The Greatwall proteins in insects and vertebrates are located in the nucleus and belong to the AGC family of serine/threonine protein kinases; the kinase domain of Greatwall is interrupted by a long stretch of unrelated amino acids.
PMCID: PMC2171981  PMID: 14970188
Drosophila; cell cycle; kinase; chromosome condensation; nuclear protein
25.  The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore–microtubule attachment and in maintaining the spindle assembly checkpoint 
The Journal of Cell Biology  2003;161(2):281-294.
The proper segregation of sister chromatids in mitosis depends on bipolar attachment of all chromosomes to the mitotic spindle. We have identified the small molecule Hesperadin as an inhibitor of chromosome alignment and segregation. Our data imply that Hesperadin causes this phenotype by inhibiting the function of the mitotic kinase Aurora B. Mammalian cells treated with Hesperadin enter anaphase in the presence of numerous monooriented chromosomes, many of which may have both sister kinetochores attached to one spindle pole (syntelic attachment). Hesperadin also causes cells arrested by taxol or monastrol to enter anaphase within <1 h, whereas cells in nocodazole stay arrested for 3–5 h. Together, our data suggest that Aurora B is required to generate unattached kinetochores on monooriented chromosomes, which in turn could promote bipolar attachment as well as maintain checkpoint signaling.
PMCID: PMC2172906  PMID: 12707311
mitosis; chromosome segregation; kinetochores; spindle assembly checkpoint; chemical biology

Results 1-25 (36)