PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  A new high-speed visual stimulation method for gaze-contingent eye movement and brain activity studies 
Approaches using eye movements as markers of ongoing brain activity to investigate perceptual and cognitive processes were able to implement highly sophisticated paradigms driven by eye movement recordings. Crucially, these paradigms involve display changes that have to occur during the time of saccadic blindness, when the subject is unaware of the change. Therefore, a combination of high-speed eye tracking and high-speed visual stimulation is required in these paradigms. For combined eye movement and brain activity studies (e.g., fMRI, EEG, MEG), fast and exact timing of display changes is especially important, because of the high susceptibility of the brain to visual stimulation. Eye tracking systems already achieve sampling rates up to 2000 Hz, but recent LCD technologies for computer screens reduced the temporal resolution to mostly 60 Hz, which is too slow for gaze-contingent display changes. We developed a high-speed video projection system, which is capable of reliably delivering display changes within the time frame of < 5 ms. This could not be achieved even with the fastest cathode ray tube (CRT) monitors available (< 16 ms). The present video projection system facilitates the realization of cutting-edge eye movement research requiring reliable high-speed visual stimulation (e.g., gaze-contingent display changes, short-time presentation, masked priming). Moreover, this system can be used for fast visual presentation in order to assess brain activity using various methods, such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). The latter technique was previously excluded from high-speed visual stimulation, because it is not possible to operate conventional CRT monitors in the strong magnetic field of an MRI scanner. Therefore, the present video projection system offers new possibilities for studying eye movement-related brain activity using a combination of eye tracking and fMRI.
doi:10.3389/fnsys.2013.00024
PMCID: PMC3696721  PMID: 23847475
eye fixation-related potential; eye tracking; EEG; ERP; fMRI; projector; gaze-contingent display changes
2.  Parafoveal X-masks interfere with foveal word recognition: evidence from fixation-related brain potentials 
The boundary paradigm, in combination with parafoveal masks, is the main technique for studying parafoveal preprocessing during reading. The rationale is that the masks (e.g., strings of X's) prevent parafoveal preprocessing, but do not interfere with foveal processing. A recent study, however, raised doubts about the neutrality of parafoveal masks. In the present study, we explored this issue by means of fixation-related brain potentials (FRPs). Two FRP conditions presented rows of five words. The task of the participant was to judge whether the final word of a list was a “new” word, or whether it was a repeated (i.e., “old”) word. The critical manipulation was that the final word was X-masked during parafoveal preview in one condition, whereas another condition presented a valid preview of the word. In two additional event-related brain potential (ERP) conditions, the words were presented serially with no parafoveal preview available; in one of the conditions with a fixed timing, in the other word presentation was self-paced by the participants. Expectedly, the valid-preview FRP condition elicited the shortest processing times. Processing times did not differ between the two ERP conditions indicating that “cognitive readiness” during self-paced processing can be ruled out as an alternative explanation for differences in processing times between the ERP and the FRP conditions. The longest processing times were found in the X-mask FRP condition indicating that parafoveal X-masks interfere with foveal word recognition.
doi:10.3389/fnsys.2013.00033
PMCID: PMC3719217  PMID: 23888130
visual word recognition; preview benefit; invisible boundary technique; parafoveal masks; eye movements; EEG
3.  Opposite effects of visual and auditory word-likeness on activity in the visual word form area 
The present fMRI study investigated the effects of word-likeness of visual and auditory stimuli on activity along the ventral visual stream. In the context of a one-back task, we presented visual and auditory words, pseudowords, and artificial stimuli (i.e., false-fonts and reversed-speech, respectively). Main findings were regionally specific effects of word-likeness on activation in a left ventral occipitotemporal region corresponding to the classic localization of the Visual Word Form Area (VWFA). Specifically, we found an inverse word-likeness effect for the visual stimuli in the form of decreased activation for words compared to pseudowords which, in turn, elicited decreased activation compared to the artificial stimuli. For the auditory stimuli, we found positive word-likeness effects as both words and pseudowords elicited more activation than the artificial stimuli. This resulted from a marked deactivation in response to the artificial stimuli and no such deactivation for words and pseudowords. We suggest that the opposite effects of visual and auditory word-likeness on VWFA activation can be explained by assuming the involvement of visual orthographic memory representations. For the visual stimuli, these representations reduce the coding effort as a function of word-likeness. This results in highest activation to the artificial stimuli and least activation to words for which corresponding representations exist. The positive auditory word-likeness effects may result from activation of orthographic information associated with the auditory words and pseudowords. The view that the VWFA has a primarily visual function is supported by our findings of high activation to the visual artificial stimuli (which have no phonological or semantic associations) and deactivation to the auditory artificial stimuli. According to the phenomenon of cross-modal sensory suppression such deactivations during demanding auditory processing are expected in visual regions.
doi:10.3389/fnhum.2013.00491
PMCID: PMC3756304  PMID: 24009569
fMRI; neuroimaging; one-back task; word-likeness; word processing; VWFA; orthographic representations
4.  Developmental dyslexia: dysfunction of a left hemisphere reading network 
This mini-review summarizes and integrates findings from recent meta-analyses and original neuroimaging studies on functional brain abnormalities in dyslexic readers. Surprisingly, there is little empirical support for the standard neuroanatomical model of developmental dyslexia, which localizes the primary phonological decoding deficit in left temporo-parietal (TP) regions. Rather, recent evidence points to a dysfunction of a left hemisphere reading network, which includes occipito-temporal (OT), inferior frontal, and inferior parietal regions.
doi:10.3389/fnhum.2012.00120
PMCID: PMC3340948  PMID: 22557962
brain; developmental dyslexia; fMRI; meta-analysis; neuroimaging; reading
5.  A Dual-Route Perspective on Poor Reading in a Regular Orthography: An fMRI Study 
This study examined functional brain abnormalities in dyslexic German readers who – due to the regularity of German in the reading direction – do not exhibit the reading accuracy problem of English dyslexic readers, but suffer primarily from a reading speed problem. The in-scanner task required phonological lexical decisions (i.e., Does xxx sound like an existing word?) and presented familiar and unfamiliar letter strings of existing phonological words (e.g., Taxi-Taksi) together with nonwords (e.g., Tazi). Dyslexic readers exhibited the same response latency pattern (words < pseudohomophones < nonwords) as nonimpaired readers, but latencies to all item types were much prolonged. The imaging results were suggestive for a different neural organization of reading processes in dyslexic readers. Specifically, dyslexic readers, in response to lexical route processes, exhibited underactivation in a left ventral occipitotemporal region which presumably is engaged by visual-orthographic whole word recognition. This region was also insensitive to the increased visual-orthographic processing demands of the sublexical route. Reduced engagement in response to sublexical route processes was also found in a left inferior parietal region, presumably engaged by attentional processes, and in a left inferior frontal region, presumably engaged by phonological processes. In contrast to this reduced engagement of the optimal left hemisphere reading network (ventral OT, inferior parietal, inferior frontal), our dyslexic readers exhibited increased engagement of visual occipital regions and of regions presumably engaged by silent articulatory processes (premotor/motor cortex and subcortical caudate and putamen).
doi:10.1016/j.cortex.2010.06.004
PMCID: PMC3073233  PMID: 20650450
6.  A Dual-Route Perspective on Brain Activation in Response to Visual Words: Evidence for a Length by Lexicality Interaction in the Visual Word Form Area (VWFA) 
NeuroImage  2009;49(3):2649-2661.
Based on our previous work, we expected the Visual Word Form Area (VWFA) in the left ventral visual pathway to be engaged by both whole-word recognition and by serial sublexical coding of letter strings. To examine this double function, a phonological lexical decision task (i.e., “Does xxx sound like an existing word?”) presented short and long letter strings of words, pseudohomophones, and pseudowords (e.g., Taxi, Taksi and Tazi). Main findings were that the length effect for words was limited to occipital regions and absent in the VWFA. In contrast, a marked length effect for pseudowords was found throughout the ventral visual pathway including the VWFA, as well as in regions presumably engaged by visual attention and silent-articulatory processes. The length by lexicality interaction on brain activation corresponds to well-established behavioral findings of a length by lexicality interaction on naming latencies and speaks for the engagement of the VWFA by both lexical and sublexical processes.
doi:10.1016/j.neuroimage.2009.10.082
PMCID: PMC2989181  PMID: 19896538
7.  Functional abnormalities in the dyslexic brain: A quantitative meta-analysis of neuroimaging studies 
Human brain mapping  2009;30(10):3299-3308.
This study used foci from 17 original studies on functional abnormalities in the dyslexic brain to identify brain regions with consistent under- or overactivation. Studies were included when reading or reading-related tasks were performed on visually presented stimuli and when results reported coordinates for group differences. Activation Likelihood Estimation (ALE) was used for quantification. Maxima of underactivation were found in inferior parietal, superior temporal, middle and inferior temporal and fusiform regions of the left hemisphere. With respect to left frontal abnormalities we found underactivation in the inferior frontal gyrus to be accompanied by overactivation in the primary motor cortex and the anterior insula. Tentative functional interpretations of the activation abnormalities are provided.
doi:10.1002/hbm.20752
PMCID: PMC2989182  PMID: 19288465
Dyslexia; Reading; Magnetic Resonance Imaging; Positron-Emission Tomography; Cerebral Cortex
8.  On the functional neuroanatomy of visual word processing: Effects of case and letter deviance 
Journal of cognitive neuroscience  2009;21(2):222-229.
This fMRI study contrasted case-deviant and letter-deviant forms with familiar forms of the same phonological words (e.g., TaXi and Taksi vs. Taxi) and found, that both types of deviance led to increased activation in a left occipitotemporal region corresponding to the Visual Word Form Area. Case-deviant items, in addition, led to increased activation in a right occipitotemporal region and in a left occipital and a left posterior occipitotemporal region, possibly reflecting the increased demands on letter form coding. For letter-deviant items, in addition to the increased left occipitotemporal activation, a main finding was increased activation primarily in extended left frontal regions, possibly reflecting sublexically mediated access to word phonology. These findings are consistent with general features of cognitive dual-route models of visual word processing. Furthermore, they add support to the main feature of Dehaene et al.’s (2005) neural model of early stages of visual word processing . However, the increased activation found for case-deviant items in the VWFA cannot be immediately reconciled with the assumption of completely abstract case-independent orthographic word codes in the VWFA.
doi:10.1162/jocn.2009.21002
PMCID: PMC2976854  PMID: 18476755
Functional MRI; visual word recognition; occipitotemporal cortex; visual word form area; orthographic processing
9.  A dual-route perspective on poor reading in a regular orthography: An fMRI study 
This study examined functional brain abnormalities in dyslexic German readers who – due to the regularity of German in the reading direction – do not exhibit the reading accuracy problem of English dyslexic readers, but suffer primarily from a reading speed problem. The in-scanner task required phonological lexical decisions (i.e., Does xxx sound like an existing word?) and presented familiar and unfamiliar letter strings of existing phonological words (e.g., Taxi-Taksi) together with nonwords (e.g., Tazi). Dyslexic readers exhibited the same response latency pattern (words < pseudohomophones < nonwords) as nonimpaired readers, but latencies to all item types were much prolonged. The imaging results were suggestive for a different neural organization of reading processes in dyslexic readers. Specifically, dyslexic readers, in response to lexical route processes, exhibited underactivation in a left ventral occipitotemporal (OT) region which presumably is engaged by visual-orthographic whole word recognition. This region was also insensitive to the increased visual-orthographic processing demands of the sublexical route. Reduced engagement in response to sublexical route processes was also found in a left inferior parietal region, presumably engaged by attentional processes, and in a left inferior frontal region, presumably engaged by phonological processes. In contrast to this reduced engagement of the optimal left hemisphere reading network (ventral OT, inferior parietal, inferior frontal), our dyslexic readers exhibited increased engagement of visual occipital regions and of regions presumably engaged by silent articulatory processes (premotor/motor cortex and subcortical caudate and putamen).
doi:10.1016/j.cortex.2010.06.004
PMCID: PMC3073233  PMID: 20650450
Developmental dyslexia; fMRI; Reading; Phonological lexical decision; Dual-route
10.  A Common Left Occipito-Temporal Dysfunction in Developmental Dyslexia and Acquired Letter-By-Letter Reading? 
PLoS ONE  2010;5(8):e12073.
Background
We used fMRI to examine functional brain abnormalities of German-speaking dyslexics who suffer from slow effortful reading but not from a reading accuracy problem. Similar to acquired cases of letter-by-letter reading, the developmental cases exhibited an abnormal strong effect of length (i.e., number of letters) on response time for words and pseudowords.
Results
Corresponding to lesions of left occipito-temporal (OT) regions in acquired cases, we found a dysfunction of this region in our developmental cases who failed to exhibit responsiveness of left OT regions to the length of words and pseudowords. This abnormality in the left OT cortex was accompanied by absent responsiveness to increased sublexical reading demands in phonological inferior frontal gyrus (IFG) regions. Interestingly, there was no abnormality in the left superior temporal cortex which—corresponding to the onological deficit explanation—is considered to be the prime locus of the reading difficulties of developmental dyslexia cases.
Conclusions
The present functional imaging results suggest that developmental dyslexia similar to acquired letter-by-letter reading is due to a primary dysfunction of left OT regions.
doi:10.1371/journal.pone.0012073
PMCID: PMC2920311  PMID: 20711448

Results 1-10 (10)