PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Myeloid cell-derived HIF attenuates inflammation in UUO-induced kidney injury 
Renal fibrosis and inflammation are associated with hypoxia, and tissue pO2 plays a central role in modulating the progression of chronic kidney disease. Key mediators of cellular adaptation to hypoxia are hypoxia-inducible factor (HIF)-1 and -2. In the kidney they are expressed in a cell type-specific manner; to what degree activation of each homolog modulates renal fibrogenesis and inflammation has not been established. To address this issue, we used Cre-loxP recombination to activate or to delete both Hif-1 and Hif-2 either globally or cell type-specifically in myeloid cells. Global activation of Hif suppressed inflammation and fibrogenesis in mice subjected to unilateral ureteral obstruction, while activation of Hif in myeloid cells suppressed inflammation only. Suppression of inflammatory cell infiltration was associated with down-regulation of CC chemokine receptors in renal macrophages. Conversely, global deletion or myeloid-specific inactivation of Hif promoted inflammation. Furthermore, prolonged hypoxia suppressed the expression of multiple inflammatory molecules in non-injured kidneys. Collectively, we provide experimental evidence that hypoxia and/or myeloid cell-specific HIF activation attenuates renal inflammation associated with chronic kidney injury.
doi:10.4049/jimmunol.1103377
PMCID: PMC3345098  PMID: 22490864
2.  Hypoxia-Inducible Factor 2 Regulates Hepatic Lipid Metabolism▿ †  
Molecular and Cellular Biology  2009;29(16):4527-4538.
In mammals, the liver integrates nutrient uptake and delivery of carbohydrates and lipids to peripheral tissues to control overall energy balance. Hepatocytes maintain metabolic homeostasis by coordinating gene expression programs in response to dietary and systemic signals. Hepatic tissue oxygenation is an important systemic signal that contributes to normal hepatocyte function as well as disease. Hypoxia-inducible factors 1 and 2 (HIF-1 and HIF-2, respectively) are oxygen-sensitive heterodimeric transcription factors, which act as key mediators of cellular adaptation to low oxygen. Previously, we have shown that HIF-2 plays an important role in both physiologic and pathophysiologic processes in the liver. HIF-2 is essential for normal fetal EPO production and erythropoiesis, while constitutive HIF-2 activity in the adult results in polycythemia and vascular tumorigenesis. Here we report a novel role for HIF-2 in regulating hepatic lipid metabolism. We found that constitutive activation of HIF-2 in the adult results in the development of severe hepatic steatosis associated with impaired fatty acid β-oxidation, decreased lipogenic gene expression, and increased lipid storage capacity. These findings demonstrate that HIF-2 functions as an important regulator of hepatic lipid metabolism and identify HIF-2 as a potential target for the treatment of fatty liver disease.
doi:10.1128/MCB.00200-09
PMCID: PMC2725738  PMID: 19528226
3.  Hypoxia-Inducible Factor (HIF)-2 regulates Vascular Tumorigenesis in Mice 
Oncogene  2008;27(40):5354-5358.
The von Hippel-Lindau tumor suppressor pVHL regulates the stability of Hypoxia-Inducible Factors (HIF) -1 and –2, oxygen-sensitive basic helix-loop-helix transcription factors, which mediate the hypoxic induction of angiogenic growth factors such as vascular endothelial growth factor (VEGF). Loss of VHL function results in constitutive activation of HIF-1 and HIF-2 and is associated with the development of highly vascularized tumors in multiple organs. We have used a conditional gene targeting approach to investigate the relative contributions of HIF-1 and HIF-2 to VHL-associated vascular tumorigenesis in a mouse model of liver hemangiomas. Here we demonstrate genetically that conditional inactivation of HIF-2α suppressed the development of VHL-associated liver hemangiomas and that angiogenic gene expression in hepatocytes is predominantly regulated by HIF-2 and not by HIF-1. These findings suggest that HIF-2 is the dominant HIF in the pathogenesis of VHL-associated vascular tumors and that pharmacologic targeting of HIF-2 may be an effective strategy for their treatment.
doi:10.1038/onc.2008.160
PMCID: PMC2575082  PMID: 18490920
4.  Hypoxia-inducible factor–2 (HIF-2) regulates hepatic erythropoietin in vivo 
Journal of Clinical Investigation  2007;117(4):1068-1077.
Erythropoiesis is critically dependent on erythropoietin (EPO), a glycoprotein hormone that is regulated by hypoxia-inducible factor (HIF). Hepatocytes are the primary source of extrarenal EPO in the adult and express HIF-1 and HIF-2, whose roles in the hypoxic induction of EPO remain controversial. In order to define the role of HIF-1 and HIF-2 in the regulation of hepatic EPO expression, we have generated mice with conditional inactivation of Hif-1α and/or Hif-2α (Epas1) in hepatocytes. We have previously shown that inactivation of the von Hippel–Lindau tumor suppressor pVHL, which targets both HIFs for proteasomal degradation, results in increased hepatic Epo production and polycythemia independent of Hif-1α. Here we show that conditional inactivation of Hif-2α in pVHL-deficient mice suppressed hepatic Epo and the development of polycythemia. Furthermore, we found that physiological Epo expression in infant livers required Hif-2α but not Hif-1α and that the hypoxic induction of liver Epo in anemic adults was Hif-2α dependent. Since other Hif target genes such phosphoglycerate kinase 1 (Pgk) were Hif-1α dependent, we provide genetic evidence that HIF-1 and HIF-2 have distinct roles in the regulation of hypoxia-inducible genes and that EPO is preferentially regulated by HIF-2 in the liver.
doi:10.1172/JCI30117
PMCID: PMC1838939  PMID: 17404621

Results 1-4 (4)