PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Synthetic Triterpenoid Cyano Enone of Methyl Boswellate (CEMB) activates intrinsic, extrinsic, & endoplasmic reticulum stress cell death pathways in tumor cell lines 
Molecular cancer therapeutics  2011;10(9):1635-1643.
We explored the effect of a novel synthetic triterpenoid compound Cyano Enone of Methyl Boswellates (CEMB) on various prostate cancer and glioma cancer cell lines. CEMB displayed concentration-dependent cytotoxic activity with submicromolar lethal dose 50% (LD50) values in ten of ten tumor cell lines tested. CEMB-induced cytotoxicity is accompanied by activation of downstream effector caspases (caspases 3 and 7) and by upstream initiator caspases involved in both the extrinsic (caspase 8) and intrinsic (caspase 9) apoptotic pathways. By using small interfering RNAs (siRNAs), we show evidence that knock down of caspase 8, death receptor 4 (DR4), Apaf-1, and Bid impairs CEMB-induced cell death. Similar to other proapoptotic synthetic triterpenoid compounds, CEMB-induced apoptosis involved endoplasmic reticulum (ER) stress, as demonstrated by partial rescue of tumor cells by siRNA-mediated knock-down of expression of genes involve in the unfolded protein response such as Ire1, Perk, and ATF6. Altogether our results suggest that CEMB stimulates several apoptotic pathways in cancer cells, suggesting that this compound should be evaluated further as a potential agent for cancer therapy.
doi:10.1158/1535-7163.MCT-10-0887
PMCID: PMC4174562  PMID: 21746806
Triterpenoid; Apoptosis; ER stress
2.  Design, synthesis and evaluation of inhibitor of apoptosis protein (IAP) antagonists that are highly selective for the BIR2 domain of XIAP 
We recently reported the systematic ligand-based rational design and synthesis of monovalent Smac mimetics that bind preferentially to the BIR2 domain of the anti-apoptotic protein XIAP. Expanded structure-activity relationship (SAR) studies around these peptidomimetics led to compounds with significantly improved selectivity (> 60-fold) for the BIR2 domain vs. the BIR3 domain of XIAP. The potent and highly selective IAP antagonist 8q (ML183) sensitized TRAIL-resistant prostate cancer cells to apoptotic cell death, highlighting the value of this probe compound as a valuable tool to investigate the biology of XIAP.
doi:10.1016/j.bmcl.2013.04.096
PMCID: PMC3772719  PMID: 23743278
Apoptosis; XIAP; Monovalent Smac mimetics; Probe compounds
3.  In silico identification of genetic variants in glucocerebrosidase (GBA) gene involved in Gaucher's disease using multiple software tools 
Frontiers in Genetics  2014;5:148.
Gaucher's disease (GD) is an autosomal recessive disorder caused by the deficiency of glucocerebrosidase, a lysosomal enzyme that catalyses the hydrolysis of the glycolipid glucocerebroside to ceramide and glucose. Polymorphisms in GBA gene have been associated with the development of Gaucher disease. We hypothesize that prediction of SNPs using multiple state of the art software tools will help in increasing the confidence in identification of SNPs involved in GD. Enzyme replacement therapy is the only option for GD. Our goal is to use several state of art SNP algorithms to predict/address harmful SNPs using comparative studies. In this study seven different algorithms (SIFT, MutPred, nsSNP Analyzer, PANTHER, PMUT, PROVEAN, and SNPs&GO) were used to predict the harmful polymorphisms. Among the seven programs, SIFT found 47 nsSNPs as deleterious, MutPred found 46 nsSNPs as harmful. nsSNP Analyzer program found 43 out of 47 nsSNPs are disease causing SNPs whereas PANTHER found 32 out of 47 as highly deleterious, 22 out of 47 are classified as pathological mutations by PMUT, 44 out of 47 were predicted to be deleterious by PROVEAN server, all 47 shows the disease related mutations by SNPs&GO. Twenty two nsSNPs were commonly predicted by all the seven different algorithms. The common 22 targeted mutations are F251L, C342G, W312C, P415R, R463C, D127V, A309V, G46E, G202E, P391L, Y363C, Y205C, W378C, I402T, S366R, F397S, Y418C, P401L, G195E, W184R, R48W, and T43R.
doi:10.3389/fgene.2014.00148
PMCID: PMC4034330  PMID: 24904648
glucocerebrosidase; SIFT; MutPred; PANTHER; PMUT; PROVEAN; SNPs&GO
4.  A Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress 
Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER) is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded-protein response (UPR) through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS). Toxic accumulation of ROS within ER and mitochondria disturbs fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways have been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease, and others. In this review, we have discussed the UPR signaling pathways, and networking between ER stress-induced inflammatory pathways, oxidative stress, and mitochondrial signaling events, which further induce or exacerbate ER stress.
doi:10.3389/fncel.2014.00213
PMCID: PMC4114208  PMID: 25120434
endoplasmic reticulum stress; inflammation; oxidative stress; NF-κB; IRE1α; calcium
5.  Interleukin-1 Receptor-Associated Kinase-2 (IRAK2) Is a Critical Mediator of Endoplasmic Reticulum (ER) Stress Signaling 
PLoS ONE  2013;8(5):e64256.
Endoplasmic reticulum (ER) stress occurs when unfolded proteins accumulate in the lumen of the organelle, triggering signal transduction events that contribute either to cellular adaptation and recovery or alternatively to cellular dysfunction and death. ER stress has been implicated in numerous diseases. To identify novel modulators of ER stress, we undertook a siRNA library screen of the kinome, revealing Interleukin-1 Receptor-Associated Kinase-2 (IRAK2) as a contributor to unfolded protein response (UPR) signaling and ER stress-induced cell death. Knocking down expression of IRAK2 (but not IRAK1) in cultured mammalian cells suppresses ER stress-induced expression of the pro-apoptotic transcription factor CHOP and activation of stress kinases. Similarly, RNAi-mediated silencing of the IRAK family member Tube (but not Pelle) suppresses activation of stress kinase signaling induced by ER stress in Drosophila cells. The action of IRAK2 maps to the IRE1 pathway, rather than the PERK or ATF6 components of the UPR. Interestingly, ER stress also induces IRAK2 gene expression in an IRE1/XBP1-dependent manner, suggesting a mutually supporting amplification loop involving IRAK2 and IRE1. In vivo, ER stress induces Irak2 expression in mice. Moreover, Irak2 gene knockout mice display defects in ER stress-induced CHOP expression and IRE1 pathway signaling. These findings demonstrate an unexpected linkage of the innate immunity machinery to UPR signaling, revealing IRAK2 as a novel amplifier of the IRE1 pathway.
doi:10.1371/journal.pone.0064256
PMCID: PMC3665826  PMID: 23724040
6.  Exposure to an organometal compound stimulates adipokine and cytokine expression in white adipose tissue 
Cytokine  2010;53(3):355-362.
Objective
White adipose tissue (WAT) is now considered a defined tissue capable of interactions with other organ systems. WAT role in elevating the level of systemic chronic inflammation suggests that alterations in this tissue as the result of disease or environmental factors may influence the development and progression of various obesity-related pathologies. This study investigated WAT cell-specific responses to an organometal compound, trimethyltin (TMT), to determine possible contribution to induced inflammation.
Methods
Human primary mature adipocytes and macrophage differentiated THP-1 cells were cultured in TMT presence and relative toxicities and different adipokine levels were determined. The inflammatory response was examined in TMT presence for primary cells from obese ob/ob mice WAT, and after TMT injection in ob/ob mice.
Results
Both adipocytes and macrophages were resistant to cell death induced by TMT. However, adipocytes cultured in TMT presence showed increased expression of TNFα and IL-6, and modified leptin levels. In macrophage cultures, TMT also increased TNFα and IL-6, while MCP-1 and MIP-1α were decreased. In vivo, a single injection of TMT in ob/ob mice, elevated TNFα, MIP-1α and adiponectin in WAT.
Conclusions
Elevation of the inflammatory related products can be induced by chemical exposure in adipocytes and macrophages, as well as murine WAT. These data suggest that numerous factors, including a systemic chemical exposure, can induce an inflammatory response from the WAT. Furthermore, when characterizing both chemical-induced toxicity and the progression of the chronic inflammation associated with elevated WAT content, such responses in this target tissue should be taken into consideration.
doi:10.1016/j.cyto.2010.11.015
PMCID: PMC3418814  PMID: 21194965
white adipose tissue; adipocytes; adipokines; inflammation; trimethyltin
7.  Chemical modifications of natural triterpenes - glycyrrhetinic and boswellic acids: evaluation of their biological activity 
Tetrahedron  2008;64(51):11541-11548.
Synthetic analogues of naturally occurring triterpenoids; glycyrrhetinic acid, arjunolic acid and boswellic acids, by modification of A-ring with a cyano- and enone- functionalities, have been reported. A novel method of synthesis of α-cyanoenones from isoxazoles is reported. Bio-assays using primary mouse macrophages and tumor cell lines indicate potent anti-inflammatory and cytotoxic activities associated with cyanoenones of boswellic acid and glycyrrhetinic acid.
doi:10.1016/j.tet.2008.10.035
PMCID: PMC2900779  PMID: 20622928
8.  Signaling pathways involved in LPS induced TNFalpha production in human adipocytes 
Background
The development of obesity has been linked to an inflammatory process, and the role of adipose tissue in the secretion of pro-inflammatory molecules such as IL-6 or TNFalpha has now been largely confirmed. Although TNFalpha secretion by adipose cells is probably induced, most notably by TLR ligands, the activation and secretion pathways of this cytokine are not yet entirely understood. Moreover, given that macrophagic infiltration is a characteristic of obesity, it is difficult to clearly establish the level of involvement of the different cellular types present within the adipose tissue during inflammation.
Methods
Primary cultures of human adipocytes and human peripheral blood mononuclear cells were used. Cells were treated with a pathogen-associated molecular pattern: LPS, with and without several kinase inhibitors. Western blot for p38 MAP Kinase was performed on cell lysates. TNFalpha mRNA was detected in cells by RT-PCR and TNFalpha protein was detected in supernatants by ELISA assays.
Results
We show for the first time that the production of TNFalpha in mature human adipocytes is mainly dependent upon two pathways: NFkappaB and p38 MAP Kinase. Moreover, we demonstrate that the PI3Kinase pathway is clearly involved in the first step of the LPS-pathway. Lastly, we show that adipocytes are able to secrete a large amount of TNFalpha compared to macrophages.
Conclusion
This study clearly demonstrates that the LPS induced activation pathway is an integral part of the inflammatory process linked to obesity, and that adipocytes are responsible for most of the secreted TNFalpha in inflamed adipose tissue, through TLR4 activation.
doi:10.1186/1476-9255-7-1
PMCID: PMC2819999  PMID: 20148136

Results 1-8 (8)