Search tips
Search criteria

Results 1-17 (17)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  DNA Binding Properties of the Small Cascade Subunit Csa5 
PLoS ONE  2014;9(8):e105716.
CRISPR-Cas systems provide immunity against viral attacks in archaeal and bacterial cells. Type I systems employ a Cas protein complex termed Cascade, which utilizes small CRISPR RNAs to detect and degrade the exogenic DNA. A small sequence motif, the PAM, marks the foreign substrates. Previously, a recombinant type I-A Cascade complex from the archaeon Thermoproteus tenax was shown to target and degrade DNA in vitro, dependent on a native PAM sequence. Here, we present the biochemical analysis of the small subunit, Csa5, of this Cascade complex. T. tenax Csa5 preferentially bound ssDNA and mutants that showed decreased ssDNA-binding and reduced Cascade-mediated DNA cleavage were identified. Csa5 oligomerization prevented DNA binding. Specific recognition of the PAM sequence was not observed. Phylogenetic analyses identified Csa5 as a universal member of type I-A systems and revealed three distinct groups. A potential role of Csa5 in R-loop stabilization is discussed.
PMCID: PMC4141822  PMID: 25148031
2.  Comparative analysis of Cas6b processing and CRISPR RNA stability 
RNA Biology  2013;10(5):700-707.
The prokaryotic antiviral defense systems CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) employs short crRNAs (CRISPR RNAs) to target invading viral nucleic acids. A short spacer sequence of these crRNAs can be derived from a viral genome and recognizes a reoccurring attack of a virus via base complementarity. We analyzed the effect of spacer sequences on the maturation of crRNAs of the subtype I-B Methanococcus maripaludis C5 CRISPR cluster. The responsible endonuclease, termed Cas6b, bound non-hydrolyzable repeat RNA as a dimer and mature crRNA as a monomer. Comparative analysis of Cas6b processing of individual spacer-repeat-spacer RNA substrates and crRNA stability revealed the potential influence of spacer sequence and length on these parameters. Correlation of these observations with the variable abundance of crRNAs visualized by deep-sequencing analyses is discussed. Finally, insertion of spacer and repeat sequences with archaeal poly-T termination signals is suggested to be prevented in archaeal CRISPR/Cas systems.
PMCID: PMC3737328  PMID: 23392318
CRISPR; Cas6; endonuclease; crRNA; in-line probing; RNA binding; transcription termination
3.  In vitro assembly and activity of an archaeal CRISPR-Cas type I-A Cascade interference complex 
Nucleic Acids Research  2014;42(8):5125-5138.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) systems of type I use a Cas ribonucleoprotein complex for antiviral defense (Cascade) to mediate the targeting and degradation of foreign DNA. To address molecular features of the archaeal type I-A Cascade interference mechanism, we established the in vitro assembly of the Thermoproteus tenax Cascade from six recombinant Cas proteins, synthetic CRISPR RNAs (crRNAs) and target DNA fragments. RNA-Seq analyses revealed the processing pattern of crRNAs from seven T. tenax CRISPR arrays. Synthetic crRNA transcripts were matured by hammerhead ribozyme cleavage. The assembly of type I-A Cascade indicates that Cas3′ and Cas3′′ are an integral part of the complex, and the interference activity was shown to be dependent on the crRNA and the matching target DNA. The reconstituted Cascade was used to identify sequence motifs that are required for efficient DNA degradation and to investigate the role of the subunits Cas7 and Cas3′′ in the interplay with other Cascade subunits.
PMCID: PMC4005679  PMID: 24500198
4.  A Complex of Cas Proteins 5, 6, and 7 Is Required for the Biogenesis and Stability of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-derived RNAs (crRNAs) in Haloferax volcanii* 
The Journal of Biological Chemistry  2014;289(10):7164-7177.
Background: The Cas6 protein is required for generating crRNAs in CRISPR-Cas I and III systems.
Results: The Cas6 protein is necessary for crRNA production but not sufficient for crRNA maintenance in Haloferax.
Conclusion: A Cascade-like complex is required in the type I-B system for a stable crRNA population.
Significance: The CRISPR-Cas system I-B has a similar Cascade complex like types I-A and I-E.
The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas) system is a prokaryotic defense mechanism against foreign genetic elements. A plethora of CRISPR-Cas versions exist, with more than 40 different Cas protein families and several different molecular approaches to fight the invading DNA. One of the key players in the system is the CRISPR-derived RNA (crRNA), which directs the invader-degrading Cas protein complex to the invader. The CRISPR-Cas types I and III use the Cas6 protein to generate mature crRNAs. Here, we show that the Cas6 protein is necessary for crRNA production but that additional Cas proteins that form a CRISPR-associated complex for antiviral defense (Cascade)-like complex are needed for crRNA stability in the CRISPR-Cas type I-B system in Haloferax volcanii in vivo. Deletion of the cas6 gene results in the loss of mature crRNAs and interference. However, cells that have the complete cas gene cluster (cas1–8b) removed and are transformed with the cas6 gene are not able to produce and stably maintain mature crRNAs. crRNA production and stability is rescued only if cas5, -6, and -7 are present. Mutational analysis of the cas6 gene reveals three amino acids (His-41, Gly-256, and Gly-258) that are essential for pre-crRNA cleavage, whereas the mutation of two amino acids (Ser-115 and Ser-224) leads to an increase of crRNA amounts. This is the first systematic in vivo analysis of Cas6 protein variants. In addition, we show that the H. volcanii I-B system contains a Cascade-like complex with a Cas7, Cas5, and Cas6 core that protects the crRNA.
PMCID: PMC3945376  PMID: 24459147
Archaea; Microbiology; Molecular Biology; Molecular Genetics; Protein Complexes; CRISPR/Cas; Cas6; Haloferax volcanii; crRNA; Type I-B
5.  Structure and RNA-binding properties of the Type III-A CRISPR-associated protein Csm3 
RNA Biology  2013;10(11):1670-1678.
The prokaryotic adaptive immune system is based on the incorporation of genome fragments of invading viral genetic elements into clusters of regulatory interspaced short palindromic repeats (CRISPRs). The CRISPR loci are transcribed and processed into crRNAs, which are then used to target the invading nucleic acid for degradation. The large family of CRISPR-associated (Cas) proteins mediates this interference response. We have characterized Methanopyrus kandleri Csm3, a protein of the type III-A CRISPR-Cas complex. The 2.4 Å resolution crystal structure shows an elaborate four-domain fold organized around a core RRM-like domain. The overall architecture highlights the structural homology to Cas7, the Cas protein that forms the backbone of type I interference complexes. Csm3 binds unstructured RNAs in a sequence non-specific manner, suggesting that it interacts with the variable spacer sequence of the crRNA. The structural and biochemical data provide insights into the similarities and differences in this group of Cas proteins.
PMCID: PMC3907477  PMID: 24157656
RAMP; RRM domain; ferredoxin domain; Cas7; adaptive immunity
6.  Exploiting CRISPR/Cas: Interference Mechanisms and Applications 
The discovery of biological concepts can often provide a framework for the development of novel molecular tools, which can help us to further understand and manipulate life. One recent example is the elucidation of the prokaryotic adaptive immune system, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) that protects bacteria and archaea against viruses or conjugative plasmids. The immunity is based on small RNA molecules that are incorporated into versatile multi-domain proteins or protein complexes and specifically target viral nucleic acids via base complementarity. CRISPR/Cas interference machines are utilized to develop novel genome editing tools for different organisms. Here, we will review the latest progress in the elucidation and application of prokaryotic CRISPR/Cas systems and discuss possible future approaches to exploit the potential of these interference machineries.
PMCID: PMC3742257  PMID: 23857052
CRISPR; crRNA; Cas9; Cascade; interference; genome editing; RGEN; TALEN; ZNF
7.  RNA-Seq analyses reveal the order of tRNA processing events and the maturation of C/D box and CRISPR RNAs in the hyperthermophile Methanopyrus kandleri 
Nucleic Acids Research  2013;41(12):6250-6258.
The methanogenic archaeon Methanopyrus kandleri grows near the upper temperature limit for life. Genome analyses revealed strategies to adapt to these harsh conditions and elucidated a unique transfer RNA (tRNA) C-to-U editing mechanism at base 8 for 30 different tRNA species. Here, RNA-Seq deep sequencing methodology was combined with computational analyses to characterize the small RNome of this hyperthermophilic organism and to obtain insights into the RNA metabolism at extreme temperatures. A large number of 132 small RNAs were identified that guide RNA modifications, which are expected to stabilize structured RNA molecules. The C/D box guide RNAs were shown to exist as circular RNA molecules. In addition, clustered regularly interspaced short palindromic repeats RNA processing and potential regulatory RNAs were identified. Finally, the identification of tRNA precursors before and after the unique C8-to-U8 editing activity enabled the determination of the order of tRNA processing events with termini truncation preceding intron removal. This order of tRNA maturation follows the compartmentalized tRNA processing order found in Eukaryotes and suggests its conservation during evolution.
PMCID: PMC3695527  PMID: 23620296
8.  Characterization of the CRISPR/Cas Subtype I-A System of the Hyperthermophilic Crenarchaeon Thermoproteus tenax 
Journal of Bacteriology  2012;194(10):2491-2500.
CRISPR (clustered regularly interspaced short palindromic repeats) elements and cas (CRISPR-associated) genes are widespread in Bacteria and Archaea. The CRISPR/Cas system operates as a defense mechanism against mobile genetic elements (i.e., viruses or plasmids). Here, we investigate seven CRISPR loci in the genome of the crenarchaeon Thermoproteus tenax that include spacers with significant similarity not only to archaeal viruses but also to T. tenax genes. The analysis of CRISPR RNA (crRNA) transcription reveals transcripts of a length between 50 and 130 nucleotides, demonstrating the processing of larger crRNA precursors. The organization of identified cas genes resembles CRISPR/Cas subtype I-A, and the core cas genes are shown to be arranged on two polycistronic transcripts: cascis (cas4, cas1/2, and csa1) and cascade (csa5, cas7, cas5a, cas3, cas3′, and cas8a2). Changes in the environmental parameters such as UV-light exposure or high ionic strength modulate cas gene transcription. Two reconstitution protocols were established for the production of two discrete multipartite Cas protein complexes that correspond to their operonic gene arrangement. These data provide insights into the specialized mechanisms of an archaeal CRISPR/Cas system and allow selective functional analyses of Cas protein complexes in the future.
PMCID: PMC3347209  PMID: 22408157
9.  Substrate Generation for Endonucleases of CRISPR/Cas Systems 
The interaction of viruses and their prokaryotic hosts shaped the evolution of bacterial and archaeal life. Prokaryotes developed several strategies to evade viral attacks that include restriction modification, abortive infection and CRISPR/Cas systems. These adaptive immune systems found in many Bacteria and most Archaea consist of clustered regularly interspaced short palindromic repeat (CRISPR) sequences and a number of CRISPR associated (Cas) genes (Fig. 1)1-3. Different sets of Cas proteins and repeats define at least three major divergent types of CRISPR/Cas systems 4. The universal proteins Cas1 and Cas2 are proposed to be involved in the uptake of viral DNA that will generate a new spacer element between two repeats at the 5' terminus of an extending CRISPR cluster 5. The entire cluster is transcribed into a precursor-crRNA containing all spacer and repeat sequences and is subsequently processed by an enzyme of the diverse Cas6 family into smaller crRNAs 6-8. These crRNAs consist of the spacer sequence flanked by a 5' terminal (8 nucleotides) and a 3' terminal tag derived from the repeat sequence 9. A repeated infection of the virus can now be blocked as the new crRNA will be directed by a Cas protein complex (Cascade) to the viral DNA and identify it as such via base complementarity10. Finally, for CRISPR/Cas type 1 systems, the nuclease Cas3 will destroy the detected invader DNA 11,12 .
These processes define CRISPR/Cas as an adaptive immune system of prokaryotes and opened a fascinating research field for the study of the involved Cas proteins. The function of many Cas proteins is still elusive and the causes for the apparent diversity of the CRISPR/Cas systems remain to be illuminated. Potential activities of most Cas proteins were predicted via detailed computational analyses. A major fraction of Cas proteins are either shown or proposed to function as endonucleases 4.
Here, we present methods to generate crRNAs and precursor-cRNAs for the study of Cas endoribonucleases. Different endonuclease assays require either short repeat sequences that can directly be synthesized as RNA oligonucleotides or longer crRNA and pre-crRNA sequences that are generated via in vitro T7 RNA polymerase run-off transcription. This methodology allows the incorporation of radioactive nucleotides for the generation of internally labeled endonuclease substrates and the creation of synthetic or mutant crRNAs. Cas6 endonuclease activity is utilized to mature pre-crRNAs into crRNAs with 5'-hydroxyl and a 2',3'-cyclic phosphate termini.
PMCID: PMC3490271  PMID: 22986408
Molecular biology; Issue 67; CRISPR/Cas; endonuclease;  in vitro transcription; crRNA; Cas6
10.  Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis  
Nucleic Acids Research  2012;40(19):9887-9896.
The CRISPR arrays found in many bacteria and most archaea are transcribed into a long precursor RNA that is processed into small clustered regularly interspaced short palindromic repeats (CRISPR) RNAs (crRNAs). These RNA molecules can contain fragments of viral genomes and mediate, together with a set of CRISPR-associated (Cas) proteins, the prokaryotic immunity against viral attacks. CRISPR/Cas systems are diverse and the Cas6 enzymes that process crRNAs vary between different subtypes. We analysed CRISPR/Cas subtype I-B and present the identification of novel Cas6 enzymes from the bacterial and archaeal model organisms Clostridium thermocellum and Methanococcus maripaludis C5. Methanococcus maripaludis Cas6b in vitro activity and specificity was determined. Two complementary catalytic histidine residues were identified. RNA-Seq analyses revealed in vivo crRNA processing sites, crRNA abundance and orientation of CRISPR transcription within these two organisms. Individual spacer sequences were identified with strong effects on transcription and processing patterns of a CRISPR cluster. These effects will need to be considered for the application of CRISPR clusters that are designed to produce synthetic crRNAs.
PMCID: PMC3479195  PMID: 22879377
11.  RNA processing in the minimal organism Nanoarchaeum equitans 
Genome Biology  2012;13(7):R63.
The minimal genome of the tiny, hyperthermophilic archaeon Nanoarchaeum equitans contains several fragmented genes and revealed unusual RNA processing pathways. These include the maturation of tRNA molecules via the trans-splicing of tRNA halves and genomic rearrangements to compensate for the absence of RNase P.
Here, the RNA processing events in the N. equitans cell are analyzed using RNA-Seq deep sequencing methodology. All tRNA half precursor and tRNA termini were determined and support the tRNA trans-splicing model. The processing of CRISPR RNAs from two CRISPR clusters was verified. Twenty-seven C/D box small RNAs (sRNAs) and a H/ACA box sRNA were identified. The C/D box sRNAs were found to flank split genes, to form dicistronic tRNA-sRNA precursors and to be encoded within the tRNAMet intron.
The presented data provide an overview of the production and usage of small RNAs in a cell that has to survive with a highly reduced genome. N. equitans lost many essential metabolic pathways but maintains highly active CRISPR/Cas and rRNA modification systems that appear to play an important role in genome fragmentation.
PMCID: PMC3491384  PMID: 22809431
12.  Small RNAs for defence and regulation in archaea 
Extremophiles  2012;16(5):685-696.
Non-coding RNAs are key players in many cellular processes within organisms from all three domains of life. The range and diversity of small RNA functions beyond their involvement in translation and RNA processing was first recognized for eukaryotes and bacteria. Since then, small RNAs were also found to be abundant in archaea. Their functions include the regulation of gene expression and the establishment of immunity against invading mobile genetic elements. This review summarizes our current knowledge about small RNAs used for regulation and defence in archaea.
PMCID: PMC3432209  PMID: 22763819
sRNA; Lsm; Hfq; Archaea; CRISPR; crRNA
13.  3'-5' tRNAHis Guanylyltransferase in Bacteria 
FEBS letters  2010;584(16):3567-3572.
The identity of the histidine specific transfer RNA (tRNAHis) is largely determined by a unique guanosine residue at position −1. In eukaryotes and archaea, the tRNAHis guanylyltransferase (Thg1) catalyzes 3'-5' addition of G to the 5'-terminus of tRNAHis. Here, we show that Thg1 also occurs in bacteria. We demonstrate in vitro Thg1 activity for recombinant enzymes from the two bacteria Bacillus thuringiensis and Myxococcus xanthus and provide a closer investigation of several archaeal Thg1. The reaction mechanism of prokaryotic Thg1 differs from eukaryotic enzymes, as it does not require ATP. Complementation of a yeast thg1 knockout strain with bacterial Thg1 verified in vivo activity and suggests a relaxed recognition of the discriminator base in bacteria.
PMCID: PMC2922398  PMID: 20650272
tRNA-His guanylyltransferase; Thg1; tRNA processing; histidyl-tRNA synthetase; RNase P
14.  Transfer RNA processing in Archaea: unusual pathways and enzymes 
FEBS letters  2010;584(2):303-309.
Transfer RNA (tRNA) molecules are highly conserved in length, sequence and structure in order to be functional in the ribosome. However, mostly in archaea, the short genes encoding tRNAs can be found disrupted, fragmented, with permutations or with non-functional mutations of conserved nucleotides. Here, we give an overview of recently discovered tRNA maturation pathways that require intricate processing steps to finally generate the standard tRNA from these unusual tRNA genes.
PMCID: PMC2796832  PMID: 19878676
tRNA processing; trans-splicing; tRNA introns; splicing endonuclease; C-to-U editing
15.  Change of tRNA identity leads to a divergent orthogonal histidyl-tRNA synthetase/tRNAHis pair 
Nucleic Acids Research  2010;39(6):2286-2293.
Mature tRNAHis has at its 5′-terminus an extra guanylate, designated as G−1. This is the major recognition element for histidyl-tRNA synthetase (HisRS) to permit acylation of tRNAHis with histidine. However, it was reported that tRNAHis of a subgroup of α-proteobacteria, including Caulobacter crescentus, lacks the critical G−1 residue. Here we show that recombinant C. crescentus HisRS allowed complete histidylation of a C. crescentus tRNAHis transcript (lacking G−1). The addition of G−1 did not improve aminoacylation by C. crescentus HisRS. However, mutations in the tRNAHis anticodon caused a drastic loss of in vitro histidylation, and mutations of bases A73 and U72 also reduced charging. Thus, the major recognition elements in C. crescentus tRNAHis are the anticodon, the discriminator base and U72, which are recognized by the divergent (based on sequence similarity) C. crescentus HisRS. Transplantation of these recognition elements into an Escherichia coli tRNAHis template, together with addition of base U20a, created a competent substrate for C. crescentus HisRS. These results illustrate how a conserved tRNA recognition pattern changed during evolution. The data also uncovered a divergent orthogonal HisRS/tRNAHis pair.
PMCID: PMC3064791  PMID: 21087993
16.  A Cytidine Deaminase Edits C to U in Transfer RNAs in Archaea 
Science (New York, N.Y.)  2009;324(5927):657-659.
All canonical transfer RNAs (tRNAs) have a uridine at position 8, involved in maintaining tRNA tertiary structure. However, the hyperthermophilic archaeon Methanopyrus kandleri harbors 30 (out of 34) tRNA genes with cytidine at position 8. Here, we demonstrate C-to-U editing at this location in the tRNA’s tertiary core, and present the crystal structure of a tRNA-specific cytidine deaminase, CDAT8, which has the cytidine deaminase domain linked to a tRNA-binding THUMP domain. CDAT8 is specific for C deamination at position 8, requires only the acceptor stem hairpin for activity, and belongs to a unique family within the “cytidine deaminase–like” superfamily. The presence of this C-to-U editing enzyme guarantees the proper folding and functionality of all M. kandleri tRNAs.
PMCID: PMC2857566  PMID: 19407206
17.  Crystal structure and assembly of the functional Nanoarchaeum equitans tRNA splicing endonuclease 
Nucleic Acids Research  2009;37(17):5793-5802.
The RNA splicing and processing endonuclease from Nanoarchaeum equitans (NEQ) belongs to the recently identified (αβ)2 family of splicing endonucleases that require two different subunits for splicing activity. N. equitans splicing endonuclease comprises the catalytic subunit (NEQ205) and the structural subunit (NEQ261). Here, we report the crystal structure of the functional NEQ enzyme at 2.1 Å containing both subunits, as well as that of the NEQ261 subunit alone at 2.2 Å. The functional enzyme resembles previously known α2 and α4 endonucleases but forms a heterotetramer: a dimer of two heterodimers of the catalytic subunit (NEQ205) and the structural subunit (NEQ261). Surprisingly, NEQ261 alone forms a homodimer, similar to the previously known homodimer of the catalytic subunit. The homodimers of isolated subunits are inhibitory to heterodimerization as illustrated by a covalently linked catalytic homodimer that had no RNA cleavage activity upon mixing with the structural subunit. Detailed structural comparison reveals a more favorable hetero- than homodimerization interface, thereby suggesting a possible regulation mechanism of enzyme assembly through available subunits. Finally, the uniquely flexible active site of the NEQ endonuclease provides a possible explanation for its broader substrate specificity.
PMCID: PMC2761253  PMID: 19578064

Results 1-17 (17)