PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Cognitive and Neuropsychiatric Profile of the Synucleinopathies: Parkinson's Disease, Dementia with Lewy Bodies and Multiple System Atrophy 
Parkinson's Disease (PD), multiple system atrophy (MSA) and dementia with Lewy Bodies (DLB) share α-synuclein immunoreactivity 1. These “synucleinopathies” have overlapping signs and symptoms, but less is known about similarities and differences in their cognitive and neuropsychiatric profiles. We compared the cognitive and neuropsychiatric profiles of individuals with PD, MSA and DLB. Overall, the DLB group showed the most cognitive impairment, the MSA group demonstrated milder impairment and the PD group was the least cognitively impaired. The DLB and MSA groups showed worse executive function and visuospatial skills than PD, while DLB showed impaired memory relative to both PD and MSA. On the neuropsychiatric screening, all groups endorsed depression and anxiety; the DLB group alone endorsed delusions and disinhibition. Consistent with their greater level of cognitive and neuropsychiatric impairment, the DLB group showed the greatest amount of functional impairment on a measure of instrumental ADLs (FAQ). We found that MSA subjects had cognitive difficulties that fell between the mild deficits of the PD group and the more severe deficits of the DLB group. PD, MSA and DLB groups have similar neuropsychiatric profiles of increased depression and anxiety. Similar underlying α-synuclein pathology may contribute to these shared features.
doi:10.1097/WAD.0b013e3181b5065d
PMCID: PMC2886667  PMID: 19935145
Parkinson's Disease; Dementia with Lewy Bodies; multiple system atrophy; dementia; alpha-synuclein
2.  Gray matter correlates of set-shifting among neurodegenerative disease, mild cognitive impairment, and healthy older adults 
There is increasing recognition that set-shifting, a form of cognitive control, is mediated by different neural structures. However, these regions have not yet been carefully identified as many studies do not account for the influence of component processes (e.g., motor speed). We investigated gray matter correlates of set-shifting while controlling for component processes. Using the Design Fluency (DF), Trail Making Test (TMT), and Color Word Interference (CWI) subtests from the Delis-Kaplan Executive Function System (D-KEFS), we investigated the correlation between set-shifting performance and gray matter volume in 160 subjects with neurodegenerative disease, mild cognitive impairment, and healthy older adults using voxel-based morphometry. All three set-shifting tasks correlated with multiple, widespread gray matter regions. After controlling for the component processes, set-shifting performance correlated with focal regions in prefrontal and posterior parietal cortices. We also identified bilateral prefrontal cortex and the right posterior parietal lobe as common sites for set-shifting across the three tasks. There was a high degree of multicollinearity between the set-shifting conditions and the component processes of TMT and CWI, suggesting DF may better isolate set-shifting regions. Overall, these findings highlight the neuroanatomical correlates of set-shifting and the importance of controlling for component processes when investigating complex cognitive tasks.
doi:10.1017/S1355617710000408
PMCID: PMC2891121  PMID: 20374676
D-KEFS; Design fluency; Trail making test; Color word interference; Executive function; Voxel-based morphometry

Results 1-2 (2)