Search tips
Search criteria

Results 1-25 (33)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Commentary: Probiotic and technological properties of Lactobacillus spp. strains from the human stomach in the search for potential candidates against gastric microbial dysbiosis 
PMCID: PMC4437036  PMID: 26042097
Lactobacillus reuteri; Helicobacter pylori; probiotics; inflammation; triple therapy
2.  Ginger and Its Constituents: Role in Prevention and Treatment of Gastrointestinal Cancer 
Gastrointestinal (GI) cancer, a cancer of different organs of the digestive system, is one of the most common cancers around the world. The incidence and death rate of some of these cancers are very high. Although a large variety of chemotherapeutic agents have been introduced since the last few decades to combat GI cancer, most of them are very expensive and have side effects. Therefore, the compounds derived from natural sources, which are considered to be safe and cost effective, are needed. Ginger (Zingiber officinale) is one of the most widely used natural products consumed as a spice and medicine for treating nausea, dysentery, heartburn, flatulence, diarrhea, loss of appetite, infections, cough, and bronchitis. Experimental studies showed that ginger and its active components including 6-gingerol and 6-shogaol exert anticancer activities against GI cancer. The anticancer activity of ginger is attributed to its ability to modulate several signaling molecules like NF-κB, STAT3, MAPK, PI3K, ERK1/2, Akt, TNF-α, COX-2, cyclin D1, cdk, MMP-9, survivin, cIAP-1, XIAP, Bcl-2, caspases, and other cell growth regulatory proteins. In this review, the evidences for the chemopreventive and chemotherapeutic potential of ginger extract and its active components using in vitro, animal models, and patients have been described.
PMCID: PMC4369959  PMID: 25838819
3.  Nimbolide, a Limonoid Triterpene, Inhibits Growth of Human Colorectal Cancer Xenografts by Suppressing the Proinflammatory Microenvironment 
Extensive research over the past decade has revealed that the proinflammatory microenvironment plays a critical role in the development of colorectal cancer (CRC). Whether nimbolide, a limonoid triterpene, can inhibit the growth of CRC was investigated in the present study.
Experimental Design
The effect of nimbolide on proliferation of CRC cell lines was examined by MTT assay, apoptosis by caspase activation and poly-ADP ribose polymerase cleavage, nuclear factor-kappa B (NF-kB) activation by DNA-binding assay, and protein expression by Western blotting. The effect of nimbolide on the tumor growth in vivo was examined in CRC xenografts in a nude mouse model.
Nimbolide inhibited proliferation, induced apoptosis, and suppressed NF-κB activation and NF-κB–regulated tumorigenic proteins in CRC cells. The suppression of NF-κB activation by nimbolide was caused by sequential inhibition of IκB kinase (IKK) activation, IκBα phosphorylation, and p65 nuclear translocation. Furthermore, the effect of nimbolide on IKK activity was found to be direct. In vivo, nimbolide (at 5 and 20 mg/kg body weight), injected intraperitoneally after tumor inoculation, significantly decreased the volume of CRC xenografts. The limonoid-treated xenografts exhibited significant down-regulation in the expression of proteins involved in tumor cell survival (Bcl-2, Bcl-xL, c-IAP-1, survivin, Mcl-1), proliferation (c-Myc, cyclin D1), invasion (MMP-9, ICAM-1), metastasis (CXCR4), and angiogenesis (VEGF). The limonoid was found to be bioavailable in the blood plasma and tumor tissues of treated mice.
Our studies provide evidence that nimbolide can suppress the growth of human CRC through modulation of the proinflammatory microenvironment.
PMCID: PMC4220790  PMID: 23766363
Colorectal cancer; Inflammation; Limonoid; Nimbolide; NF-κB
4.  Curcumin Glucuronides: Assessing the Proliferative Activity against Human Cell Lines 
Bioorganic & medicinal chemistry  2013;22(1):435-439.
A gram scale synthesis of the glucuronide metabolites of curcumin were completed in four steps. The newly synthesized curcumin glucuronide compounds 2 and 3 along with curcumin 1 were tested and their anti-proliferative effects against KBM-5, Jurkat cell, U266, and A549 cell lines were reported. Biological data revealed that as much as 1 μM curcumin 1 exhibited anticancer activity and almost 100% cell kill was noted at 10 μM on two out of four cell lines; while curcumin mono-glucuronide 2 as well as diglucuronide 3 displayed no suppression of cell proliferation.
PMCID: PMC4128398  PMID: 24280069
5.  Prevention and Treatment of Colorectal Cancer by Natural Agents From Mother Nature 
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the United States after cancers of the lung and the breast/prostate. While the incidence of CRC in the United States is among the highest in the world (approximately 52/100,000), its incidence in countries in India is among the lowest (approximately 7/100,000), suggesting that lifestyle factors may play a role in development of the disease. Whereas obesity, excessive alcohol consumption, a high-calorie diet, and a lack of physical activity promote this cancer, evidence indicates that foods containing folates, selenium, Vitamin D, dietary fiber, garlic, milk, calcium, spices, vegetables, and fruits are protective against CRC in humans. Numerous agents from “mother nature” (also called “nutraceuticals,”) that have potential to both prevent and treat CRC have been identified. The most significant discoveries relate to compounds such as cardamonin, celastrol, curcumin, deguelin, diosgenin, thymoquinone, tocotrienol, ursolic acid, and zerumbone. Unlike pharmaceutical drugs, these agents modulate multiple targets, including transcription factors, growth factors, tumor cell survival factors, inflammatory pathways, and invasion and angiogenesis linked closely to CRC. We describe the potential of these dietary agents to suppress the growth of human CRC cells in culture and to inhibit tumor growth in animal models. We also describe clinical trials in which these agents have been tested for efficacy in humans. Because of their safety and affordability, these nutraceuticals provide a novel opportunity for treatment of CRC, an “old age” disease with an “age old” solution.
PMCID: PMC3693477  PMID: 23814530
nutraceuticals; CRC; curcumin; gingerol; piperine
6.  Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: the Golden Pigment from Golden Spice 
Curcumin (diferuloylmethane) is a yellow pigment present in the spice turmeric (Curcuma longa) that has been associated with antioxidant, anti-inflammatory, anticancer, antiviral, and antibacterial activities as indicated by over 6,000 citations. In addition, over one hundred clinical studies have been carried out with curcumin. One of the major problems with curcumin is perceived to be the bioavailability. How curcumin should be delivered in vivo, how bioavailable is it, how well curcumin is absorbed and how it is metabolized, is the focus of this review. Various formulations of curcumin that are currently available are also discussed.
PMCID: PMC3918523  PMID: 24520218
Curcumin; Nano-formulation; Biological availability; Metabolism; Anticancer
7.  Capsazepine, a TRPV1 antagonist, sensitizes colorectal cancer cells to apoptosis by TRAIL through ROSg–JNK–CHOP-mediated upregulation of death receptors 
Free radical biology & medicine  2012;53(10):1977-1987.
A major problem in clinical trials of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as cancer therapy is the development of resistance to TRAIL. Therefore, agents that can overcome TRAIL resistance have great therapeutic potential. In this study, we evaluated capsazepine, a TRPV1 antagonist, for its ability to sensitize human colon cancer cells to TRAIL-induced apoptosis. Capsazepine potentiated the effect of TRAIL, as shown by its effect on intracellular esterase activity; activation of caspase-8,–9, and -3; and colony-formation assay. Capsazepine induced death receptors (DRs) DR5 and DR4, but not decoy receptors, at the transcriptional level and in a non-cell-type-specific manner. DR induction was dependent on CCAAT/enhancer-binding protein homologous protein (CHOP), as shown by (a) the induction of CHOP by capsazepine and (b) the abolition of DR- and potentiation of TRAIL-induced apoptosis by CHOP gene silencing. CHOP induction was also reactive oxygen species (ROS)-dependent, as shown by capsazepine’s ability to induce ROS and by the quenching of ROS by N-acetylcysteine or glutathione, which prevented induction of CHOP and DR5 and consequent sensitization to TRAIL. Capsazepine’s effects appeared to be mediated via JNK, as shown by capsazepine’s ability to induce JNK and by the suppression of both CHOP and DR5 activation by inhibition of JNK. Furthermore, ROS sequestration abrogated the activation of JNK. Finally, capsazepine downregulated the expression of various antiapoptotic proteins (e.g., cFLIP and survivin) and increased the expression of proapoptotic proteins (e.g., Bax and p53). Together, our results indicate that capsazepine potentiates the apoptotic effects of TRAIL through downregulation of cell survival proteins and upregulation of death receptors via the ROS–JNK–CHOP-mediated pathway.
PMCID: PMC3731040  PMID: 22922338
TRPV1 antagonist; TRAIL; Apoptosis; Death receptor; Free radicals
8.  Ursolic Acid Inhibits Growth and Metastasis of Human Colorectal Cancer in an Orthotopic Nude Mouse Model by Targeting Multiple Cell Signaling Pathways: Chemosensitization with Capecitabine 
Development of chemoresistance, poor prognosis, and metastasis often renders the current treatments for colorectal cancer (CRC) ineffective. Whether ursolic acid (UA), a component of numerous medicinal plants, either alone or in combination with capecitabine, can inhibit the growth and metastasis of human CRC was investigated.
Experimental design
The effect of UA on proliferation of colorectal cancer cell lines was examined by mitochondrial dye-uptake assay, apoptosis by esterase staining, NF-κB activation by DNA binding assay and protein expression by western blot. The effect of UA on the growth and chemosensitization was also examined in orthotopically-implanted CRC in nude mice.
We found that UA inhibited the proliferation of different colon cancer cell lines. This is correlated with inhibition of constitutive NF-κB activation and downregulation of cell survival (Bcl-xL, Bcl-2, cFLIP, survivin), proliferative (Cyclin D1), and metastatic (MMP-9, VEGF, ICAM-1) proteins. When examined in an orthotopic nude-mice model, UA significantly inhibited tumor volume, ascites formation and distant organ metastasis, and this effect was enhanced with capecitabine. Immunohistochemistry of tumor tissue indicated that UA downregulated biomarkers of proliferation (Ki-67) and microvessel density (CD31). This effect was accompanied by suppression of NF-κB, STAT3, and β-catenin. In addition, UA suppressed EGFR, and induced p53, and p21 expression. We also observed bioavailability of UA in the serum and tissue of animals.
Overall our results demonstrate that UA can inhibit the growth and metastasis of CRC and further enhance the therapeutic effects of capecitabine through suppression of multiple biomarkers linked to inflammation, proliferation, invasion, angiogenesis, and metastasis.
PMCID: PMC3677707  PMID: 22832932
9.  Cardamonin Inhibits Osteoclastogenesis Induced by Tumor Cells Through Interruption of the Signaling Pathway Activated by Receptor Activator of NF-κB Ligand 
Cancer letters  2011;10.1016/j.canlet.2011.12.011.
Bone loss/resorption or osteoporosis is a disease that is accelerated with aging and age-associated chronic diseases such as cancer. Bone loss has been associated with human multiple myeloma, breast cancer, and prostate cancer and is usually treated with a bisphosphonate. Because of the numerous side effects of the currently available drugs, the search continues for safe and effective therapies for bone loss. Recently, receptor activator of NF-κB ligand (RANKL), a member of the TNF superfamily, has emerged as a major mediator of bone loss via activation of osteoclastogenesis. We have identified cardamonin, a chalcone first isolated from grass cardamom (Alpinia katsumadai Hayata), that can affect osteoclastogenesis through modulation of RANKL. We found that treatment of monocytes with cardamonin suppressed RANKL-induced NF-κB activation and this suppression correlated with inhibition of IκBα kinase and of phosphorylation and degradation of IκBα, an inhibitor of NF-κB. Cardamonin suppressed the differentiation of monocytes to osteoclasts in a dose-dependent and time-dependent manner. We also found that an NF-κB–specific inhibitory peptide blocked RANKL-induced osteoclastogenesis, indicating a direct link with NF-κB. Finally, osteoclastogenesis induced by human breast cancer cells or human multiple myeloma cells was completely suppressed by cardamonin. Collectively, our results indicate that cardamonin suppresses osteoclastogenesis induced by RANKL and tumor cells by suppressing activation of the NF-κB pathway.
PMCID: PMC3769506  PMID: 22182452
Osteoclastogenesis; RANKL; NF-κB; Cancer; Cardamonin
10.  Multiple Antioxidants Improve Cardiac Complications and Inhibit Cardiac Cell Death in Streptozotocin-Induced Diabetic Rats 
PLoS ONE  2013;8(7):e67009.
Diabetic cardiomyopathy, a disorder of the heart muscle in diabetic patients, is one of the major causes of heart failure. Since diabetic cardiomyopathy is now known to have a high prevalence in the asymptomatic diabetic patient, prevention at the earliest stage of development by existing molecules would be appropriate in order to prevent the progression of heart failure. In this study, we investigated the protective role of multiple antioxidants (MA), on cardiac dysfunction and cardiac cell apoptosis in streptozotocin (STZ)-induced diabetic rat. Diabetic cardiomyopathy in STZ-treated animals was characterized by declined systolic, diastolic myocardial performance, oxidative stress and apoptosis in cardiac cells. Diabetic rats on supplementation with MA showed decreased oxidative stress evaluated by the content of reduced levels of lipid per-oxidation and decreased activity of catalase with down-regulation of heme-oxygenase-1 mRNA. Supplementation with MA also resulted in a normalized lipid profile and decreased levels of pro-inflammatory transcription factor NF-kappaB as well as cytokines such as TNF-α, IFN-γ, TGF-β, and IL-10. MA was found to decrease the expression of ROS-generating enzymes like xanthine oxidase, monoamine oxidase-A along with 5-Lipoxygenase mRNA and/or protein expression. Further, left ventricular function, measured by a microtip pressure transducer, was re-established as evidenced by increase in ±dp/dtmax, heart rate, decreased blood pressure, systolic and diastolic pressure as well as decrease in the TUNEL positive cardiac cells with increased Bcl-2/Bax ratio. In addition, MA supplementation decreased cell death and activation of NF-kappaB in cardiac H9c2 cells. Based on our results, we conclude that MA supplementation significantly attenuated cardiac dysfunction in diabetic rats; hence MA supplementation may have important clinical implications in terms of prevention and management of diabetic cardiomyopathy.
PMCID: PMC3699585  PMID: 23843977
11.  RANKL Signaling and Osteoclastogenesis Is Negatively Regulated by Cardamonin 
PLoS ONE  2013;8(5):e64118.
Bone loss/resorption or osteoporosis is a disease that is accelerated with aging and age-associated chronic diseases such as cancer. Bone loss has been linked with human multiple myeloma, breast cancer, and prostate cancer and is usually treated with bisphosphonates, and recently approved denosumab, an antibody against receptor activator of NF-κB ligand (RANKL). Because of the numerous side effects of the currently available drugs, the search continues for safe and effective therapies for bone loss. RANKL, a member of the TNF superfamily, has emerged as a major mediator of bone loss via activation of osteoclastogenesis. We have identified cardamonin, a chalcone isolated from Alpinia katsumadai Hayata that can affect osteoclastogenesis through modulation of RANKL. We found that treatment of monocytes with cardamonin suppressed RANKL-induced NF-κB activation and this suppression correlated with inhibition of IκBα kinase and of phosphorylation and degradation of IκBα, an inhibitor of NF-κB. Furthermore, cardamonin also downregulated RANKL-induced phosphorylation of MAPK including ERK and p38 MAPK. Cardamonin suppressed the RANKL-induced differentiation of monocytes to osteoclasts in a dose-dependent and time-dependent manner. We also found that an inhibitor of NF-κB essential modulator (NEMO) blocked RANKL-induced osteoclastogenesis, indicating a direct link with NF-κB. Finally, osteoclastogenesis induced by human breast cancer cells or human multiple myeloma cells were completely suppressed by cardamonin. Collectively, our results indicate that cardamonin suppresses osteoclastogenesis induced by RANKL and tumor cells by suppressing activation of the NF-κB and MAPK pathway.
PMCID: PMC3656934  PMID: 23691159
12.  Boswellic Acid Inhibits Growth and Metastasis of Human Colorectal Cancer in Orthotopic Mouse Model By Downregulating Inflammatory, Proliferative, Invasive, and Angiogenic Biomarkers 
Numerous cancer therapeutics were originally identified from natural products used in traditional medicine. One such agent is acetyl-11-keto-beta-boswellic acid (AKBA), derived from the gum resin of the Boswellia serrata known as Salai guggal or Indian frankincense. Traditionally it has been used in Ayurvedic medicine to treat proinflammatory conditions. In the present report, we hypothesized that AKBA can affect the growth and metastasis of colorectal cancer (CRC) in orthotopically-implanted tumors in nude mice. We found that the oral administration of AKBA (50-200 mg/kg) dose-dependently inhibited the growth of CRC tumors in mice, resulting in decrease in tumor volumes than those seen in vehicle-treated mice without significant decreases in body weight. In addition, we observed that AKBA was highly effective in suppressing ascites and distant metastasis to the liver, lungs, and spleen in orthotopically-implanted tumors in nude mice. When examined for the mechanism, we found that markers of tumor proliferation index Ki-67 and the microvessel density CD31; were significantly downregulated by AKBA treatment. We also found that AKBA significantly suppressed NF-κB activation in the tumor tissue and expression of pro-inflammatory (COX2), tumor survival (bcl-2, bcl-xL, IAP-1, survivin), proliferative (cyclin D1), invasive (ICAM-1, MMP-9) and angiogenic (CXCR4 and VEGF) biomarkers. When examined for serum and tissue levels of AKBA, a dose-dependent increase in the levels of the drug was detected, indicating its bioavailability. Thus, our findings suggest that this boswellic acid analogue can inhibit the growth and metastasis of human CRC in vivo through downregulation of cancer-associated biomarkers.
PMCID: PMC3246525  PMID: 21702037
AKBA; colorectal cancer; NF-κB; growth; metastasis
13.  Age-Associated Chronic Diseases Require Age-Old Medicine: Role of Chronic Inflammation 
Preventive Medicine  2011;54(Suppl):S29-S37.
Most chronic diseases - such as cancer, cardiovascular disease (CVD), Alzheimer disease, Parkinson disease, arthritis, diabetes and obesity - are becoming leading causes of disability and death all over the world. Some of the most common causes of these age-associated chronic diseases are lack of physical activity, poor nutrition, tobacco use, and excessive alcohol consumption. All the risk factors linked to these chronic diseases have been shown to up-regulate inflammation. Therefore, downregulation of inflammation-associated risk factors could prevent or delay these age-associated diseases. Although modern science has developed several drugs for treating chronic diseases, most of these drugs are enormously expensive and are associated with serious side effects and morbidity. In this review, we present evidence on how chronic inflammation leads to age-associated chronic disease. Furthermore, we discuss diet and lifestyle as solutions for age-associated chronic disease.
PMCID: PMC3340492  PMID: 22178471
chronic disease; aging; inflammation; diet; life style
14.  Multitargeting by curcumin as revealed by molecular interaction studies 
Natural product reports  2011;28(12):1937-1955.
Curcumin (diferuloylmethane), the active ingredient in turmeric (Curcuma longa), is a highly pleiotropic molecule with anti-inflammatory, anti-oxidant, chemopreventive, chemosensitization, and radiosensitization activities. The pleiotropic activities attributed to curcumin come from its complex molecular structure and chemistry, as well as its ability to influence multiple signaling molecules. Curcumin has been shown to bind by multiple forces directly to numerous signaling molecules, such as inflammatory molecules, cell survival proteins, protein kinases, protein reductases, histone acetyltransferase, histone deacetylase, glyoxalase I, xanthine oxidase, proteasome, HIV1 integrase, HIV1 protease, sarco (endo) plasmic reticulum Ca2+ ATPase, DNA methyltransferases 1, FtsZ protofilaments, carrier proteins, and metal ions. Curcumin can also bind directly to DNA and RNA. Owing to its β-diketone moiety, curcumin undergoes keto–enol tautomerism that has been reported as a favorable state for direct binding. The functional groups on curcumin found suitable for interaction with other macromolecules include the α, β-unsaturated β-diketone moiety, carbonyl and enolic groups of the β-diketone moiety, methoxy and phenolic hydroxyl groups, and the phenyl rings. Various biophysical tools have been used to monitor direct interaction of curcumin with other proteins, including absorption, fluorescence, Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy, surface plasmon resonance, competitive ligand binding, Forster type fluorescence resonance energy transfer (FRET), radiolabeling, site-directed mutagenesis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), immunoprecipitation, phage display biopanning, electron microscopy, 1-anilino-8-naphthalene-sulfonate (ANS) displacement, and co-localization. Molecular docking, the most commonly employed computational tool for calculating binding affinities and predicting binding sites, has also been used to further characterize curcumin’s binding sites. Furthermore, the ability of curcumin to bind directly to carrier proteins improves its solubility and bioavailability. In this review, we focus on how curcumin directly targets signaling molecules, as well as the different forces that bind the curcumin–protein complex and how this interaction affects the biological properties of proteins. We will also discuss various analogues of curcumin designed to bind selective targets with increased affinity.
PMCID: PMC3604998  PMID: 21979811
15.  Cancer and diet: How are they related? 
Free radical research  2011;45(8):864-879.
Extensive research in the past decade has revealed cancer to be a multigenic disease caused by perturbation of multiple cell signalling pathways and dysregulation of numerous gene products, all of which have been linked to inflammation. It is also becoming evident that various lifestyle factors, such as tobacco and alcohol use, diet, environmental pollution, radiation and infections, can cause chronic inflammation and lead to tumourigenesis. Chronic diseases caused by ongoing inflammation therefore require chronic, not acute, treatment. Nutraceuticals, compounds derived from fruits, vegetables, spices and cereals, can be used chronically. This study discusses the molecular targets of some nutraceuticals that happen to be markers of chronic inflammation and how they can prevent or treat cancer. These naturally-occurring agents in the diet have great potential as anti-cancer drugs, thus proving Hippocrates, who proclaimed 25 centuries ago, ‘Let food be thy medicine and medicine be thy food’.
PMCID: PMC3564493  PMID: 21651450
Dietary agents; inflammation; cancer
16.  Cardamonin sensitizes tumour cells to TRAIL through ROS- and CHOP-mediated up-regulation of death receptors and down-regulation of survival proteins 
British Journal of Pharmacology  2012;165(3):741-753.
TNF-related apoptosis-inducing ligand (TRAIL) is currently in clinical trials as a treatment for cancer, but development of resistance is a major drawback. Thus agents that can overcome resistance to TRAIL are urgently needed. Cardamonin (2′,4′-dihydroxy-6′-methoxychalcone) has been shown to affect cell growth by modulating various cell signalling pathways. Hence, we investigated the effect of cardamonin on the actions of TRAIL.
The effect of cardamonin on TRAIL was measured by plasma membrane integrity, phosphatidylserine exposure, mitochondrial activity, and activation of caspase-8, caspase-9, and caspase-3 in human colon cancer cells.
Cardamonin potentiated TRAIL-induced apoptosis and this correlated with up-regulation of both the TRAIL death receptor (DR) 4, 5 at mRNA and protein levels. TRAIL-decoy receptor DcR1 was down-regulated by cardamonin. Induction of DRs by cardamonin occurred in a variety of cell types. Gene silencing of the DRs by small interfering RNA (siRNA) abolished the effect of cardamonin on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the DR. Induction of the DR by cardamonin was p53-independent but required CCAAT/enhancer binding protein homologous protein (CHOP); cardamonin induced CHOP, and its silencing by siRNA eliminated the induction of DR5. Cardamonin increased the production of reactive oxygen species (ROS) and quenching ROS abolished its induction of receptors and enhancement of TRAIL-induced apoptosis. Cardamonin also decreased the expression of various cell survival proteins.
Cardamonin potentiates TRAIL-induced apoptosis through ROS-CHOP-mediated up-regulation of DRs, decreased expression of decoy receptor and cell survival proteins. Thus, cardamonin has the potential to make TRAIL more effective as an anticancer therapy.
PMCID: PMC3315045  PMID: 21797841
Cardamonin; TRAIL; apoptosis; death receptors; ROS
17.  Correction: Boswellic Acid Suppresses Growth and Metastasis of Human Pancreatic Tumors in an Orthotopic Nude Mouse Model through Modulation of Multiple Targets 
PLoS ONE  2012;7(8):10.1371/annotation/d4645c95-739f-4175-b753-b6fe0ba6063c.
PMCID: PMC3414630
18.  Gambogic Acid Inhibits STAT3 Phosphorylation Through Activation of Protein Tyrosine Phosphatase SHP-1: Potential Role in Proliferation and Apoptosis 
The transcription factor, signal transducer and activator of transcription 3 (STAT3), is associated with proliferation, survival, and metastasis of cancer cells. We investigated whether gambogic acid (GA), a xanthone derived from the resin of traditional Chinese medicine, Gamboge hanburyi (mangosteen), can regulate the STAT3 pathway, leading to suppression of growth and sensitization of cancer cells. We found that GA induced apoptosis in human multiple myeloma cells that correlated with the inhibition of both constitutive and inducible STAT3 activation. STAT3 phosphorylation at both tyrosine residue 705 and serine residue 727 was inhibited by GA. STAT3 suppression was mediated through the inhibition of activation of the protein tyrosine kinases Janus-activated kinase (JAK) 1, and JAK2. Treatment with the protein tyrosine phosphatase (PTP) inhibitor pervanadate reversed the GA-induced down-regulation of STAT3, suggesting the involvement of a PTP. We also found that GA induced the expression of the PTP SHP-1. Deletion of the SHP-1 gene by small interfering RNA suppressed the ability of GA to inhibit STAT3 activation and to induce apoptosis, suggesting the critical role of SHP-1 in its action. Moreover, GA down-regulated the expression of STAT3-regulated antiapoptotic (Bcl-2, Bcl-xL, and Mcl-1), proliferative (cyclin D1), and angiogenic (VEGF) proteins, and this correlated with suppression of proliferation and induction of apoptosis. Overall, these results suggest that GA blocks STAT3 activation, leading to suppression of tumor cell proliferation and induction of apoptosis.
PMCID: PMC3131433  PMID: 21490133
Gambogic acid; STAT3; Apoptosis; Proliferation; Cancer
19.  The Role of Chalcones in Suppression of NF-κB-Mediated Inflammation and Cancer 
International immunopharmacology  2010;11(3):295-309.
Although consumption of fruits, vegetables, spices, cereals and pulses has been associated with lower incidence of cancer and other chronic diseases, how these dietary agents and their active ingredients minimize these diseases, is not fully understood. Whether it is oranges, kawa, hops, water-lilly, locorice, wax apple or mulberry, they are all connected by a group of aromatic ketones, called chalcones (1,3-diaryl-2-propen-1-ones). Some of the most significant chalcones identified from these plants include flavokawin, butein, xanthoangelol, 4-hydroxyderricin, cardamonin, 2′,4′-dihydroxychalcone, isoliquiritigenin, isosalipurposide, and naringenin. These chalcones have been linked with immunomodulation, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, anticancer, and antidiabetic activities. The current review, however, deals with the role of various chalcones in inflammation that controls both the immune system and tumorigenesis. Inflammatory pathways have been shown to mediate the survival, proliferation, invasion, angiogenesis and metastasis of tumors. How these chalcones modulate inflammatory pathways, tumorigenesis and immune system is the focus of this review.
PMCID: PMC3058688  PMID: 21184860
Chalcone; nuclear factor-κB; Inflammation; tumor cell proliferation; invasion and angiogenesis; apoptosis
20.  ROS and CHOP are Critical for Dibenzylideneacetone to Sensitize Tumor Cells to TRAIL Through Induction of Death Receptors and Downregulation of Cell Survival Proteins 
Cancer research  2010;71(2):538-549.
Because TRAIL selectively kills tumor cells, it is being tested in cancer patients. Unfortunately, patients develop resistance to the cytokine, therefore, agents which can sensitize cells to TRAIL are urgently needed. In the present study, we investigated whether dibenzylideneacetone (DBA) can sensitize cancer cells to TRAIL and potentiates TRAIL-induced apoptosis. As indicated by accumulation of the membrane phospholipid phosphatidylserine, DNA breaks, intracellular esterase activity, and activation of caspase-8, -9, and -3, we concluded that DBA potentiated TRAIL-induced apoptosis in colon cancer cells. DBA also converted TRAIL resistant-cells to TRAIL-sensitive. When examined for the mechanism, we found that DBA decreased the expression of antiapoptotic proteins and decoy recptor-2 and increased proapoptotic proteins. DBA also induced both death receptor (DR)-5 and DR4. Knockdown of DR5 and DR4 by small interfering RNA (SiRNA) reduced the sensitizing effect of DBA on TRAIL-induced apoptosis. In addition, DBA increased the expression of CHOP proteins. Knockdown of CHOP by siRNA decreased the induction of DBA-induced DR5 expression and apoptosis. Induction of receptors by DBA, however, was p53-independent, as deletion of p53 had no effect on receptor induction. We observed that DBA-induced induction of DR5 and DR4 was mediated through generation of reactive oxygen species (ROS), as N-acetylcysteine blocked the induction of death receptors and suppression of cell survival proteins by DBA. Overall, our results demonstrate that DBA potentiates TRAIL-induced apoptosis through downregulation of cell survival proteins and upregulation of death receptors via ROS-mediated CHOP activation.
PMCID: PMC3022089  PMID: 21127198
DBA; TRAIL; apoptosis; death receptors; ROS
21.  Thiocolchicoside Exhibits Anticancer Effects through Downregulation of NF-κB Pathway and Its Regulated Gene Products Linked to Inflammation and Cancer 
The discovery of new uses for older, clinically approved drugs is one way to expedite drug development for cancer. Thiocolchicoside, a semisynthetic colchicoside from the plant Gloriosa superba, is a muscle relaxant and used to treat rheumatologic and orthopedic disorders because of its analgesic and anti-inflammatory mechanisms. Given that activation of the transcription factor NF-κB plays a major role in inflammation and tumorigenesis, we postulated that thiocolchicoside would inhibit NF-κB and exhibit anticancer effects through the modulation of NF-κB–regulated proteins. We show that thiocolchicoside inhibited proliferation of leukemia, myeloma, squamous cell carcinoma, breast, colon, and kidney cancer cells. Formation of tumor colonies was also suppressed by thiocolchicoside. The colchicoside induced apoptosis, as indicated by caspase-3 and poly(ADP-ribose) polymerase cleavage, and suppressed the expression of cell survival [e.g., Bcl-2, X-linked inhibitor of apoptosis (XIAP), MCL-1, bcl-xL, cIAP-1, cIAP-2, and cFLIP] proteins. Cell proliferation biomarkers such as c-MYC and phosphorylation of phosphoinositide 3-kinase and glycogen synthase kinase 3β were also blocked by thiocolchicoside. Because most cell survival and proliferation gene products are regulated by NF-κB, we studied the effect of thiocolchicoside on this transcription factor and found that thiocolchicoside inhibited NF-κB activation, degradation of inhibitory κBα (IκBα), IκBα ubiquitination, and phosphorylation, abolished the activation of IκBα kinase, and suppressed p65 nuclear translocation. This effect of thiocolchicoside on the NF-κB pathway led to inhibition of NF-κB reporter activity and cyclooxygenase-2 promoter activity. Our results indicate that thiocolchicoside exhibits anticancer activity through inhibition of NF-κB and NF-κB–regulated gene products, which provides novel insight into a half-century old drug.
PMCID: PMC3142676  PMID: 20978115
22.  Boswellic Acid Suppresses Growth and Metastasis of Human Pancreatic Tumors in an Orthotopic Nude Mouse Model through Modulation of Multiple Targets 
PLoS ONE  2011;6(10):e26943.
Pancreatic cancer (PaCa) is one of the most lethal cancers, with an estimated 5-year survival of <5% even when patients are given the best treatment available. In addition, these treatments are often toxic and expensive, thus new agents which are safe, affordable and effective are urgently needed. We describe here the results of our study with acetyl-11-keto-β-boswellic acid (AKBA), an agent obtained from an Ayurvedic medicine, gum resin of Boswellia serrata. Whether AKBA has an activity against human PaCa, was examined in in vitro models and in an orthotopic nude mouse model of PaCa. We found that AKBA inhibited the proliferation of four different PaCa cell lines (AsPC-1, PANC-28, and MIA PaCa-2 with K-Ras and p53 mutations, and BxPC-3 with wild-type K-Ras and p53 mutation). These effects correlated with an inhibition of constitutively active NF-κB and suppression of NF-κB regulating gene expression. AKBA also induced apoptosis, and sensitized the cells to apoptotic effects of gemcitabine. In the orthotopic nude mouse model of PaCa, p.o. administration of AKBA alone (100 mg/kg) significantly inhibited the tumor growth; this activity was enhanced by gemcitabine. In addition, AKBA inhibited the metastasis of the PaCa to spleen, liver, and lungs. This correlated with decreases in Ki-67, a biomarker of proliferation, and CD31, a biomarker of microvessel density, in the tumor tissue. AKBA produced significant decreases in the expression of NF-κB regulating genes in the tissues. Immunohistochemical analysis also showed AKBA downregulated the expression of COX-2, MMP-9, CXCR4, and VEGF in the tissues. Overall these results demonstrate that AKBA can suppress the growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model that correlates with modulation of multiple targets.
PMCID: PMC3204996  PMID: 22066019
23.  Cyclodextrin-Complexed Curcumin Exhibits Anti-inflammatory and Antiproliferative Activities Superior to Those of Curcumin Through Higher Cellular Uptake 
Biochemical pharmacology  2010;80(7):1021-1032.
Curcumin, a yellow pigment present in the spice turmeric (Curcuma longa), has been linked with multiple beneficial activities, but its optimum potential is limited by poor bioavailability, in part due to lack of solubility in aqueous solvents. To overcome the solubility problem, we have recently developed a novel cyclodextrin complex of curcumin (CDC) and examined here this compound for anti-inflammatory and antiproliferative effects. Using the electrophoretic gel shift mobility assay, we found that CDC was more active than free curcumin in inhibiting TNF-induced activation of the inflammatory transcription factor NF-κB and in suppressing gene products regulated by NF-κB, including those involved in cell proliferation (cyclin D1), invasion (MMP-9), and angiogenesis (VEGF). CDC was also more active than free curcumin in inducing the death receptors DR4 and DR5. Annexin V staining, cleavage of caspase-3 and PARP, and DNA fragmentation showed that CDC was more potent than free curcumin in inducing apoptosis of leukemic cells. Antiproliferative assays also demonstrated that CDC was more active than free curcumin in suppressing proliferation of various cancer cell lines. The cyclodextrin vehicle had no effect in these assays. Compared with free curcumin, CDC had a greater cellular uptake and longer half-life in the cells. Overall we demonstrated that CDC had superior attributes compared with free curcumin for cellular uptake and for antiproliferative and anti-inflammatory activities.
PMCID: PMC2923254  PMID: 20599780
Cyclodextrin complex of curcumin; Solubility; Apoptosis; NF-κB; Cancer
24.  Embelin Suppresses Osteoclastogenesis Induced by RANKL and Tumor cells In Vitro Through Inhibition of the NF-κB Cell Signaling Pathway 
Molecular cancer research : MCR  2010;8(10):1425-1436.
Most patients with cancer die not because of the tumor in the primary site, but because it has spread to other sites. Common tumors, such as breast, lung and prostate tumors, frequently metastasize to the bone. It is now well recognized that osteoclasts are responsible for the osteolysis observed in bone metastases of the tumor. RANKL, a member of the TNF superfamily and an activator of the NF-κB signaling pathway, has emerged as a major mediator of bone loss, commonly associated with cancer and other chronic inflammatory diseases. Embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone), from an Ayurvedic medicinal plant Embelia ribes, has been shown to bind and inhibit XIAP protein and inhibit inflammatory pathways. We investigated whether embelin could inhibit osteoclastogenesis-associated bone loss induced by RANKL and by tumor cells in vitro. We found that embelin suppressed the RANKL-induced differentiation of monocytes into osteoclasts. This benzoquinone also suppressed the osteoclastogenesis induced by multiple myeloma and by breast cancer cells. This effect of embelin correlated with the suppression of NF-κB activation, inhibition of IκBα phosphorylation and IκBα degradation. Inhibition of IκBα phosphorylation was due to the inhibition of IκBα kinase activation. Furthermore, by using an inhibitor of the IκBα kinase γ or NF-κB essential modulator (NEMO), the regulatory component of the IκBα kinase complex, we demonstrated that the NF-κB signaling pathway is mandatory for RAW264.7 differentiation into osteoclasts. Thus, inhibitors of RANKL-induced NF-κB activation have great potential as therapeutic agents for osteoporosis and cancer-linked bone loss.
PMCID: PMC2974017  PMID: 20826545
Osteoclastogenesis; RANKL; NF-κB; Tumors; Signaling
25.  Identification of Novel Anti-inflammatory Agents from Ayurvedic Medicine for Prevention of Chronic Diseases 
Current drug targets  2011;12(11):1595-1653.
Inflammation, although first characterized by Cornelius Celsus, a physician in first Century Rome, it was Rudolf Virchow, a German physician in nineteenth century who suggested a link between inflammation and cancer, cardiovascular diseases, diabetes, pulmonary diseases, neurological diseases and other chronic diseases. Extensive research within last three decades has confirmed these observations and identified the molecular basis for most chronic diseases and for the associated inflammation. The transcription factor, Nuclear Factor-kappaB (NF-κB) that controls over 500 different gene products, has emerged as major mediator of inflammation. Thus agents that can inhibit NF-κB and diminish chronic inflammation have potential to prevent or delay the onset of the chronic diseases and further even treat them. In an attempt to identify novel anti-inflammatory agents which are safe and effective, in contrast to high throughput screen, we have turned to “reverse pharmacology” or “bed to benchside” approach. We found that Ayurveda, a science of long life, almost 6000 years old, can serve as a “goldmine” for novel anti-inflammatory agents used for centuries to treat chronic diseases. The current review is an attempt to provide description of various Ayurvedic plants currently used for treatment, their active chemical components, and the inflammatory pathways that they inhibit.
PMCID: PMC3170500  PMID: 21561421

Results 1-25 (33)