Search tips
Search criteria

Results 1-25 (26)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Involvement of Escherichia coli DNA Replication Proteins in Phage Lambda Red-Mediated Homologous Recombination 
PLoS ONE  2013;8(6):e67440.
The Red recombination system of bacteriophage lambda is widely used for genetic engineering because of its ability to promote recombination between bacterial chromosomes or plasmids and linear DNA species introduced by electroporation. The process is known to be intimately tied to replication, but the cellular functions which participate with Red in this process are largely unknown. Here two such functions are identified: the GrpE-DnaK-DnaJ chaperone system, and DNA polymerase I. Mutations in either function are found to decrease the efficiency of Red recombination. grpE and dnaJ mutations which greatly decrease Red recombination with electroporated DNA species have only small effects on Red-mediated transduction. This recombination event specificity suggests that the involvement of GrpE-DnaJ-DnaK is not simply an effect on Red structure or stability.
PMCID: PMC3686724  PMID: 23840702
2.  High efficiency generalized transduction in Escherichia coli O157:H7 
F1000Research  2013;2:7.
Genetic manipulation in enterohemorrhagic E. coli O157:H7 is currently restricted to recombineering, a method that utilizes the recombination system of bacteriophage lambda, to introduce gene replacements and base changes inter alia into the genome. Bacteriophage 933W is a prophage in E. coli O157:H7 strain EDL933, which encodes the genes ( stx2AB) for the production of Shiga toxin which is the basis for the potentially fatal Hemolytic Uremic Syndrome in infected humans. We replaced the stx2AB genes with a kanamycin cassette using recombineering. After induction of the prophage by ultra-violet light, we found that bacteriophage lysates were capable of transducing to wildtype, point mutations in the lactose, arabinose and maltose genes. The lysates could also transduce tetracycline resistant cassettes. Bacteriophage 933W is also efficient at transducing markers in E. coli K-12. Co-transduction experiments indicated that the maximal amount of transferred DNA was likely the size of the bacteriophage genome, 61 kB. All tested transductants, in both E. coli K-12 and O157:H7, were kanamycin-sensitive indicating that the transducing particles contained host DNA.
PMCID: PMC3752737  PMID: 24358856
3.  Natural DNA Uptake by Escherichia coli 
PLoS ONE  2012;7(4):e35620.
Escherichia coli has homologues of the competence genes other species use for DNA uptake and processing, but natural competence and transformation have never been detected. Although we previously showed that these genes are induced by the competence regulator Sxy as in other gamma-proteobacteria, no conditions are known that naturally induce sxy expression. We have now tested whether the competence gene homologues encode a functional DNA uptake machinery and whether DNA uptake leads to recombination, by investigating the effects of plasmid-borne sxy expression on natural competence in a wide variety of E. coli strains. High- and low-level sxy expression alone did not induce transformation in any of the strains tested, despite varying the transforming DNA, its concentration, and the incubation conditions used. Direct measurements of uptake of radiolabelled DNA were below the limit of detection, however transformants were readily detected when recombination functions were provided by the lambda Red recombinase. This is the first demonstration that E. coli sxy expression can induce natural DNA uptake and that E. coli's competence genes do encode a functional uptake machinery. However, the amount of transformation cells undergo is limited both by low levels of DNA uptake and by inefficient DNA processing/recombination.
PMCID: PMC3330819  PMID: 22532864
4.  A T3 and T7 Recombinant Phage Acquires Efficient Adsorption and a Broader Host Range 
PLoS ONE  2012;7(2):e30954.
It is usually thought that bacteriophage T7 is female specific, while phage T3 can propagate on male and female Escherichia coli. We found that the growth patterns of phages T7M and T3 do not match the above characteristics, instead showing strain dependent male exclusion. Furthermore, a T3/7 hybrid phage exhibits a broader host range relative to that of T3, T7, as well as T7M, and is able to overcome the male exclusion. The T7M sequence closely resembles that of T3. T3/7 is essentially T3 based, but a DNA fragment containing part of the tail fiber gene 17 is replaced by the T7 sequence. T3 displays inferior adsorption to strains tested herein compared to T7. The T3 and T7 recombinant phage carries altered tail fibers and acquires better adsorption efficiency than T3. How phages T3 and T7 recombine was previously unclear. This study is the first to show that recombination can occur accurately within only 8 base-pair homology, where four-way junction structures are identified. Genomic recombination models based on endonuclease I cleavages at equivalent and nonequivalent sites followed by strand annealing are proposed. Retention of pseudo-palindromes can increase recombination frequency for reviving under stress.
PMCID: PMC3276506  PMID: 22347414
5.  Recombination Phenotypes of Escherichia coli greA Mutants 
BMC Molecular Biology  2011;12:12.
The elongation factor GreA binds to RNA polymerase and modulates transcriptional pausing. Some recent research suggests that the primary role of GreA may not be to regulate gene expression, but rather, to promote the progression of replication forks which collide with RNA polymerase, and which might otherwise collapse. Replication fork collapse is known to generate dsDNA breaks, which can be recombinogenic. It follows that GreA malfunction could have consequences affecting homologous recombination.
Escherichia coli mutants bearing substitutions of the active site acidic residues of the transcription elongation factor GreA, D41N and E44K, were isolated as suppressors of growth inhibition by a toxic variant of the bacteriophage lambda Red-beta recombination protein. These mutants, as well as a D41A greA mutant and a greA deletion, were tested for proficiency in recombination events. The mutations were found to increase the efficiency of RecA-RecBCD-mediated and RecA-Red-mediated recombination, which are replication-independent, and to decrease the efficiency of replication-dependent Red-mediated recombination.
These observations provide new evidence for a role of GreA in resolving conflicts between replication and transcription.
PMCID: PMC3078854  PMID: 21453489
6.  Expansion of a chromosomal repeat in Escherichia coli: roles of replication, repair, and recombination functions 
BMC Molecular Biology  2009;10:14.
Previous studies of gene amplification in Escherichia coli have suggested that it occurs in two steps: duplication and expansion. Expansion is thought to result from homologous recombination between the repeated segments created by duplication. To explore the mechanism of expansion, a 7 kbp duplication in the chromosome containing a leaky mutant version of the lac operon was constructed, and its expansion into an amplified array was studied.
Under selection for lac function, colonies bearing multiple copies of the mutant lac operon appeared at a constant rate of approximately 4 to 5 per million cells plated per day, on days two through seven after plating. Expansion was not seen in a recA strain; null mutations in recBCD and ruvC reduced the rate 100- and 10-fold, respectively; a ruvC recG double mutant reduced the rate 1000-fold. Expansion occurred at an increased rate in cells lacking dam, polA, rnhA, or uvrD functions. Null mutations of various other cellular recombination, repair, and stress response genes had little effect upon expansion. The red recombination genes of phage lambda could substitute for recBCD in mediating expansion. In the red-substituted cells, expansion was only partially dependent upon recA function.
These observations are consistent with the idea that the expansion step of gene amplification is closely related, mechanistically, to interchromosomal homologous recombination events. They additionally provide support for recently described models of RecA-independent Red-mediated recombination at replication forks.
PMCID: PMC2656507  PMID: 19236706
7.  Amplification of lac Cannot Account for Adaptive Mutation to Lac+ in Escherichia coli▿  
Journal of Bacteriology  2007;189(6):2291-2299.
When the Lac− strain of Escherichia coli, FC40, is incubated with lactose as its sole carbon and energy source, Lac+ revertants arise at a constant rate, a phenomenon known as adaptive mutation. Two alternative models for adaptive mutation have been proposed: (i) recombination-dependent mutation, which specifies that recombination occurring in nongrowing cells stimulates error-prone DNA synthesis, and (ii) amplification-dependent mutation, which specifies that amplification of the lac region and growth of the amplifying cells creates enough DNA replication to produce mutations at the normal rate. Here, we examined several of the predictions of the amplification-dependent mutation model and found that they are not fulfilled. First, inhibition of adaptive mutation by a gene that is toxic when overexpressed does not depend on the proximity of the gene to lac. Second, mutation at a second locus during selection for Lac+ revertants is also independent of the proximity of the locus to lac. Third, mutation at a second locus on the episome occurs even when the lac allele under selection is on the chromosome. Our results support the hypothesis that most Lac+ mutants that appear during lactose selection are true revertants that arise in a single step from Lac− cells, not from a population of growing or amplifying precursor cells.
PMCID: PMC1899370  PMID: 17209030
8.  Chromosomal duplications and cointegrates generated by the bacteriophage lamdba Red system in Escherichia coli K-12 
An Escherichia coli strain in which RecBCD has been genetically replaced by the bacteriophage λ Red system engages in efficient recombination between its chromosome and linear double-stranded DNA species sharing sequences with the chromosome. Previous studies of this experimental system have focused on a gene replacement-type event, in which a 3.5 kbp dsDNA consisting of the cat gene and flanking lac operon sequences recombines with the E. coli chromosome to generate a chloramphenicol-resistant Lac- recombinant. The dsDNA was delivered into the cell as part of the chromosome of a non-replicating λ vector, from which it was released by the action of a restriction endonuclease in the infected cell. This study characterizes the genetic requirements and outcomes of a variety of additional Red-promoted homologous recombination events producing Lac+ recombinants.
A number of observations concerning recombination events between the chromosome and linear DNAs were made: (1) Formation of Lac+ and Lac- recombinants depended upon the same recombination functions. (2) High multiplicity and high chromosome copy number favored Lac+ recombinant formation. (3) The Lac+ recombinants were unstable, segregating Lac- progeny. (4) A tetracycline-resistance marker in a site of the phage chromosome distant from cat was not frequently co-inherited with cat. (5) Recombination between phage sequences in the linear DNA and cryptic prophages in the chromosome was responsible for most of the observed Lac+ recombinants. In addition, observations were made concerning recombination events between the chromosome and circular DNAs: (6) Formation of recombinants depended upon both RecA and, to a lesser extent, Red. (7) The linked tetracycline-resistance marker was frequently co-inherited in this case.
The Lac+ recombinants arise from events in which homologous recombination between the incoming linear DNA and both lac and cryptic prophage sequences in the chromosome generates a partial duplication of the bacterial chromosome. When the incoming DNA species is circular rather than linear, cointegrates are the most frequent type of recombinant.
PMCID: PMC545071  PMID: 15596011
9.  Modulation of DNA Repair and Recombination by the Bacteriophage λ Orf Function in Escherichia coli K-12 
Journal of Bacteriology  2004;186(9):2699-2707.
The orf gene of bacteriophage λ, fused to a promoter, was placed in the galK locus of Escherichia coli K-12. Orf was found to suppress the recombination deficiency and sensitivity to UV radiation of mutants, in a Δ(recC ptr recB recD)::Ptac gam bet exo pae cI ΔrecG background, lacking recF, recO, recR, ruvAB, and ruvC functions. It also suppressed defects of these mutants in establishing replication of a pSC101-related plasmid. Compared to orf, the recA803 allele had only small effects on recF, recO, and recR mutant phenotypes and no effect on a ruvAB mutant. In a fully wild-type background with respect to known recombination and repair functions, orf partially suppressed the UV sensitivity of ruvAB and ruvC mutants.
PMCID: PMC387792  PMID: 15090511
10.  Corrected Sequence of the Bacteriophage P22 Genome 
Journal of Bacteriology  2003;185(4):1475-1477.
We report the first accurate genome sequence for bacteriophage P22, correcting a 0.14% error rate in previously determined sequences. DNA sequencing technology is now good enough that genomes of important model systems like P22 can be sequenced with essentially 100% accuracy with minimal investment of time and resources.
PMCID: PMC142878  PMID: 12562822
11.  Recombination-Promoting Activity of the Bacteriophage λ Rap Protein in Escherichia coli K-12 
Journal of Bacteriology  2002;184(16):4626-4629.
The rap gene of bacteriophage λ was placed in the chromosome of an Escherichia coli K-12 strain in which the recBCD gene cluster had previously been replaced by the λ red genes and in which the recG gene had been deleted. Recombination between linear double-stranded DNA molecules and the chromosome was tested in variants of the recGΔ red+ rap+ strain bearing mutations in genes known to affect recombination in other cellular pathways. The linear DNA was a 4-kb fragment containing the cat gene, with flanking lac sequences, released from an infecting phage chromosome by restriction enzyme cleavage in the cell. Replacement of wild-type lacZ with lacZ::cat was monitored by measuring the production of Lac-deficient chloramphenicol-resistant bacterial progeny. The results of these experiments indicated that the λ rap gene could functionally substitute for the E. coli ruvC gene in Red-mediated recombination.
PMCID: PMC135263  PMID: 12142434
12.  Phage λ Red-Mediated Adaptive Mutation 
Journal of Bacteriology  2002;184(13):3753-3755.
Replacement of the recBCD genes of Escherichia coli with the red recombination genes of bacteriophage lambda results in a strain in which adaptive mutation occurs at an elevated frequency. Like RecBCD-dependent adaptive mutation, Red-mediated adaptive mutation is dependent upon recA and ruvABC functions.
PMCID: PMC135127  PMID: 12057974
13.  Genetic Requirements of Phage λ Red-Mediated Gene Replacement in Escherichia coli K-12 
Journal of Bacteriology  2000;182(8):2336-2340.
Recombination between short linear double-stranded DNA molecules and Escherichia coli chromosomes bearing the red genes of bacteriophage λ in place of recBCD was tested in strains bearing mutations in genes known to affect recombination in other cellular pathways. The linear DNA was a 4-kb fragment containing the cat gene, with flanking lac sequences, released from an infecting phage chromosome by restriction enzyme cleavage in the cell; formation of Lac− chloramphenicol-resistant bacterial progeny was measured. Recombinant formation was found to be reduced in ruvAB and recQ strains. In this genetic background, mutations in recF, recO, and recR had large effects on both cell viability and on recombination. In these cases, deletion of the sulA gene improved viability and strain stability, without improving recombination ability. Expression of a gene(s) from the nin region of phage λ partially complemented both the viability and recombination defects of the recF, recO, and recR mutants and the recombination defect of ruvC but not of ruvAB or recQ mutants.
PMCID: PMC111289  PMID: 10735883
14.  Roles of RuvC and RecG in Phage λ Red-Mediated Recombination 
Journal of Bacteriology  1999;181(17):5402-5408.
The recombination properties of Escherichia coli strains expressing the red genes of bacteriophage λ and lacking recBCD function either by mutation or by expression of λ gam were examined. The substrates for recombination were nonreplicating λ chromosomes, introduced by infection; Red-mediated recombination was initiated by a double-strand break created by the action of a restriction endonuclease in the infected cell. In one type of experiment, two phages marked with restriction site polymorphisms were crossed. Efficient formation of recombinant DNA molecules was observed in ruvC+ recG+, ruvC recG+, ruvC+ recG, and ruvC recG hosts. In a second type of experiment, a 1-kb nonhomology was inserted between the double-strand break and the donor chromosome’s restriction site marker. In this case, recombinant formation was found to be partially dependent upon ruvC function, especially in a recG mutant background. In a third type of experiment, the recombining partners were the host cell chromosome and a 4-kb linear DNA fragment containing the cat gene, with flanking lac sequences, released from the infecting phage chromosome by restriction enzyme cleavage in the cell; the formation of chloramphenicol-resistant bacterial progeny was measured. Dependence on RuvC varied considerably among the three types of cross. However, in all cases, the frequency of Red-mediated recombination was higher in recG than in recG+. These observations favor models in which RecG tends to push invading 3′-ended strands back out of recombination intermediates.
PMCID: PMC94048  PMID: 10464213
15.  Structure and Functions of the Bacteriophage P22 Tail Protein 
Journal of Virology  1980;34(1):234-243.
The product of gene 9 (gp9) of Salmonella typhimurium bacteriophage P22 is a multifunctional structural protein. This protein is both a specific glycosidase which imparts the adsorption characteristics of the phage for its host and a protein which participates in a specific assembly reaction during phage morphogenesis. We have begun a detailed biochemical and genetic analysis of this gene product. A relatively straightforward purification of this protein has been devised, and various physical parameters of the protein have been determined. The protein has an s20,w of 9.3S, a D20,w of 4.3 × 10−7 cm2/s, and a molecular weight, as determined by sedimentation equilibrium, of 173,000. The purified protein appears as a prolate ellipsoid upon electron microscopic examination, with an axial ratio of 4:1, which is similar to the observed shape when it is attached to the phage particle. The molecular weight is consistent with the tail protein being a dimer of gp9 and each phage containing six of these dimers. An altered form of the tail protein has been purified from supF cells infected with a phage strain carrying an amber mutation in gene 9. Phage “tailed” with this altered form of gp9 adsorb to susceptible cells but form infectious centers with a severely reduced efficiency (ca. 1%). Biochemical analysis of the purified wild-type and genetically altered tail proteins suggests that loss of infectivity correlates with a loss in the glycosidase activity of the protein (2.5% residual activity). From these results we propose that the glycosidic activity of the P22 tail protein is not essential for phage assembly or adsorption of the phage to its host but is required for subsequent steps in the process of infection.
PMCID: PMC288689  PMID: 6990016
16.  Tagging the Expressed Protein with 6 Histidines: Rapid Cloning of an Amplicon with Three Options 
PLoS ONE  2013;8(5):e63922.
We report the designing of three expression vectors that can be used for rapid cloning of any blunt-end DNA segment. Only a single set of oligonucleotides are required to perform the amplification of the target DNA and its cloning in all three vectors simultaneously. The DNA thus cloned can express a protein either with or without a hexa-histidine tag depending upon the vector used. The expression occurs from T7 promoter when transformed into E. coli BL21(DE3). Two of the three plasmids have been designed to provide the expressed protein with either N- or C-terminus 6 histidine amino acids in tandem. The third plasmid, however, does not add any tag to the expressed protein. The cloning is achieved quickly with the requirement of phosphorylation of PCR product without any restriction digestion. Additionally, the generated clones can be confirmed with a single step PCR reaction carried out from bacterial colonies (generally termed as “colony PCR”). We show the cloning, expression and purification of Green Fluorescent Protein (GFP) as proof-of-concept. Additionally, we also show the cloning and expression of four sigma factors from Mycobacterium tuberculosis further demonstrating the utility of the designed plasmids. We strongly believe that the vectors and the strategy that we have developed will facilitate the rapid cloning and expression of any gene in E. coli BL21(DE3) with or without a hexa-histidine tag.
PMCID: PMC3655076  PMID: 23691118
17.  Selection Affects Genes Involved in Replication during Long-Term Evolution in Experimental Populations of the Bacteriophage φX174 
PLoS ONE  2013;8(3):e60401.
Observing organisms that evolve in response to strong selection over very short time scales allows the determination of the molecular mechanisms underlying adaptation. Although dissecting these molecular mechanisms is expensive and time-consuming, general patterns can be detected from repeated experiments, illuminating the biological processes involved in evolutionary adaptation. The bacteriophage φX174 was grown for 50 days in replicate chemostats under two culture conditions: Escherichia coli C as host growing at 37°C and Salmonella typhimurium as host growing at 43.5°C. After 50 days, greater than 20 substitutions per chemostat had risen to detectable levels. Of the 97 substitutions, four occurred in all four chemostats, five arose in both culture conditions, eight arose in only the high temperature S. typhimurium chemostats, and seven arose only in the E. coli chemostats. The remaining substitutions were detected only in a single chemostat, however, almost half of these have been seen in other similar experiments. Our findings support previous studies that host recognition and capsid stability are two biological processes that are modified during adaptation to novel hosts and high temperature. Based upon the substitutions shared across both environments, it is apparent that genome replication and packaging are also affected during adaptation to the chemostat environment, rather than to temperature or host per se. This environment is characterized by a large number of phage and very few hosts, leading to competition among phage within the host. We conclude from these results that adaptation to a high density environment selects for changes in genome replication at both protein and DNA sequence levels.
PMCID: PMC3606162  PMID: 23533679
18.  A Novel Selection Marker for Efficient DNA Cloning and Recombineering in E. coli 
PLoS ONE  2013;8(2):e57075.
Production of recombinant DNA in bacterial cells is an essential technique in molecular biology. Plasmids are usually maintained in an E. coli host by antibiotic selection. However, there are only a few antibiotic-resistance markers available in common use. Here we report the adoption of a novel selection marker, mfabI (mutant fabI) for plasmid propagation in E. coli. mfabI expands the limited repertoire of selection markers and allows for more efficient molecular manipulation and plasmid propagation in E. coli. We show that mfabI is not only an efficient plasmid selection marker, but it also possesses unique activity that may facilitate molecular manipulation of unstable sequences. Furthermore, we have incorporated mfabI in the recombineering tool kit for generating mouse gene targeting vectors and demonstrate the advantage of using mfabI-containing recombineering vectors.
PMCID: PMC3577784  PMID: 23437314
19.  Genomic Analysis of Pseudomonas putida Phage tf with Localized Single-Strand DNA Interruptions 
PLoS ONE  2012;7(12):e51163.
The complete sequence of the 46,267 bp genome of the lytic bacteriophage tf specific to Pseudomonas putida PpG1 has been determined. The phage genome has two sets of convergently transcribed genes and 186 bp long direct terminal repeats. The overall genomic architecture of the tf phage is similar to that of the previously described Pseudomonas aeruginosa phages PaP3, LUZ24 and phiMR299-2, and 39 out of the 72 products of predicted tf open reading frames have orthologs in these phages. Accordingly, tf was classified as belonging to the LUZ24-like bacteriophage group. However, taking into account very low homology levels between tf DNA and that of the other phages, tf should be considered as an evolutionary divergent member of the group. Two distinguishing features not reported for other members of the group were found in the tf genome. Firstly, a unique end structure – a blunt right end and a 4-nucleotide 3′-protruding left end – was observed. Secondly, 14 single-chain interruptions (nicks) were found in the top strand of the tf DNA. All nicks were mapped within a consensus sequence 5′-TACT/RTGMC-3′. Two nicks were analyzed in detail and were shown to be present in more than 90% of the phage population. Although localized nicks were previously found only in the DNA of T5-like and phiKMV-like phages, it seems increasingly likely that this enigmatic structural feature is common to various other bacteriophages.
PMCID: PMC3517423  PMID: 23236447
20.  The Mitochondrial LSU rRNA Group II Intron of Ustilago maydis Encodes an Active Homing Endonuclease Likely Involved in Intron Mobility 
PLoS ONE  2012;7(11):e49551.
The a2 mating type locus gene lga2 is critical for uniparental mitochondrial DNA inheritance during sexual development of Ustilago maydis. Specifically, the absence of lga2 results in biparental inheritance, along with efficient transfer of intronic regions in the large subunit rRNA gene between parental molecules. However, the underlying role of the predicted LAGLIDADG homing endonuclease gene I-UmaI located within the group II intron LRII1 has remained unresolved.
Methodology/Principal Findings
We have investigated the enzymatic activity of I-UmaI in vitro based on expression of a tagged full-length and a naturally occurring mutant derivative, which harbors only the N-terminal LAGLIDADG domain. This confirmed Mg2+-dependent endonuclease activity and cleavage at the LRII1 insertion site to generate four base pair extensions with 3′ overhangs. Specifically, I-UmaI recognizes an asymmetric DNA sequence with a minimum length of 14 base pairs (5′-GACGGGAAGACCCT-3′) and tolerates subtle base pair substitutions within the homing site. Enzymatic analysis of the mutant variant indicated a correlation between the activity in vitro and intron homing. Bioinformatic analyses revealed that putatively functional or former functional I-UmaI homologs are confined to a few members within the Ustilaginales and Agaricales, including the phylogenetically distant species Lentinula edodes, and are linked to group II introns inserted into homologous positions in the LSU rDNA.
The present data provide strong evidence that intron homing efficiently operates under conditions of biparental inheritance in U. maydis. Conversely, uniparental inheritance may be critical to restrict the transmission of mobile introns. Bioinformatic analyses suggest that I-UmaI-associated introns have been acquired independently in distant taxa and are more widespread than anticipated from available genomic data.
PMCID: PMC3498182  PMID: 23166709
21.  Variation of Intragenic Tandem Repeat Tract of tolA Modulates Escherichia coli Stress Tolerance 
PLoS ONE  2012;7(10):e47766.
In recent work we discovered that the intragenic tandem repeat (TR) region of the tolA gene is highly variable among different Escherichia coli strains. The aim of this study was therefore to investigate the biological function and dynamics of TR variation in E. coli tolA. The biological impact of TR variation was examined by comparing the ability of a set of synthetic tolA variants with in frame repeat copies varying from 2 to 39 to rescue the altered susceptibility of an E. coli ΔtolA mutant to deoxycholic acid, sodium dodecyl sulfate, hyperosmolarity, and infection with filamentous bacteriophage. Interestingly, although each of the TolA variants was able to at least partly rescue the ΔtolA mutant, the extent was clearly dependent on both the repeat number and the type of stress imposed, indicating the existence of opposing selective forces with regard to the optimal TR copy number. Subsequently, TR dynamics in a clonal population were assayed, and we could demonstrate that TR contractions are RecA dependent and enhanced in a DNA repair deficient uvrD background, and can occur at a frequency of 6.9×10−5.
PMCID: PMC3477136  PMID: 23094082
22.  Characterization of Two New CTX-M-25-Group Extended-Spectrum β-Lactamase Variants Identified in Escherichia coli Isolates from Israel 
PLoS ONE  2012;7(9):e46329.
We characterized two new CTX-M-type extended-spectrum β-lactamase (ESBL) variants in Escherichia coli isolates from stool samples of two elderly patients admitted at the Tel Aviv Sourasky Medical Center, Israel. Both patients underwent treatment with cephalosporins prior to isolation of the E. coli strains.
ESBLs were detected by the double-disk synergy test and PCR-sequencing of β-lactamase genes. The blaCTX-M genes were cloned into the pCR-BluntII-TOPO vector in E. coli TOP10. The role of amino-acid substitutions V77A and D240G was analyzed by site-directed mutagenesis of the blaCTX-M-94 and blaCTX-M-100 genes and comparative characterization of the resulting E. coli recombinants. MICs of β-lactams were determined by Etest. Plasmid profiling, mating experiments, replicon typing and sequencing of blaCTX-M flanking regions were performed to identify the genetic background of the new CTX-M variants.
The novel CTX-M β-lactamases, CTX-M-94 and -100, belonged to the CTX-M-25-group. Both variants differed from CTX-M-25 by the substitution V77A, and from CTX-M-39 by D240G. CTX-M-94 differed from all CTX-M-25-group enzymes by the substitution F119L. Glycine-240 was associated with reduced susceptibility to ceftazidime and leucine-119 with increased resistance to ceftriaxone. blaCTX-M-94 and blaCTX-M-100 were located within ISEcp1 transposition units inserted into ∼93 kb non-conjugative IncFI and ∼130 kb conjugative IncA/C plasmids, respectively. The plasmids carried also different class 1 integrons.
This is the first report on CTX-M-94 and -100 ESBLs, novel members of the CTX-M-25-group.
PMCID: PMC3458832  PMID: 23050014
23.  Cleavage of Phage DNA by the Streptococcus thermophilus CRISPR3-Cas System 
PLoS ONE  2012;7(7):e40913.
Streptococcus thermophilus, similar to other Bacteria and Archaea, has developed defense mechanisms to protect cells against invasion by foreign nucleic acids, such as virus infections and plasmid transformations. One defense system recently described in these organisms is the CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats loci coupled to CRISPR-associated genes). Two S. thermophilus CRISPR-Cas systems, CRISPR1-Cas and CRISPR3-Cas, have been shown to actively block phage infection. The CRISPR1-Cas system interferes by cleaving foreign dsDNA entering the cell in a length-specific and orientation-dependant manner. Here, we show that the S. thermophilus CRISPR3-Cas system acts by cleaving phage dsDNA genomes at the same specific position inside the targeted protospacer as observed with the CRISPR1-Cas system. Only one cleavage site was observed in all tested strains. Moreover, we observed that the CRISPR1-Cas and CRISPR3-Cas systems are compatible and, when both systems are present within the same cell, provide increased resistance against phage infection by both cleaving the invading dsDNA. We also determined that overall phage resistance efficiency is correlated to the total number of newly acquired spacers in both CRISPR loci.
PMCID: PMC3401199  PMID: 22911717
24.  Collagen-Like Proteins in Pathogenic E. coli Strains 
PLoS ONE  2012;7(6):e37872.
The genome sequences of enterohaemorrhagic E. coli O157:H7 strains show multiple open-reading frames with collagen-like sequences that are absent from the common laboratory strain K-12. These putative collagens are included in prophages embedded in O157:H7 genomes. These prophages carry numerous genes related to strain virulence and have been shown to be inducible and capable of disseminating virulence factors by horizontal gene transfer. We have cloned two collagen-like proteins from E. coli O157:H7 into a laboratory strain and analysed the structure and conformation of the recombinant proteins and several of their constituting domains by a variety of spectroscopic, biophysical, and electron microscopy techniques. We show that these molecules exhibit many of the characteristics of vertebrate collagens, including trimer formation and the presence of a collagen triple helical domain. They also contain a C-terminal trimerization domain, and a trimeric α-helical coiled-coil domain with an unusual amino acid sequence almost completely lacking leucine, valine or isoleucine residues. Intriguingly, these molecules show high thermal stability, with the collagen domain being more stable than those of vertebrate fibrillar collagens, which are much longer and post-translationally modified. Under the electron microscope, collagen-like proteins from E. coli O157:H7 show a dumbbell shape, with two globular domains joined by a hinged stalk. This morphology is consistent with their likely role as trimeric phage side-tail proteins that participate in the attachment of phage particles to E. coli target cells, either directly or through assembly with other phage tail proteins. Thus, collagen-like proteins in enterohaemorrhagic E. coli genomes may have a direct role in the dissemination of virulence-related genes through infection of harmless strains by induced bacteriophages.
PMCID: PMC3368898  PMID: 22701585
25.  Genomic, Proteomic and Physiological Characterization of a T5-like Bacteriophage for Control of Shiga Toxin-Producing Escherichia coli O157:H7 
PLoS ONE  2012;7(4):e34585.
Despite multiple control measures, Escherichia coli O157:H7 (STEC O157:H7) continues to be responsible for many food borne outbreaks in North America and elsewhere. Bacteriophage therapy may prove useful for controlling this pathogen in the host, their environment and food. Bacteriophage vB_EcoS_AKFV33 (AKFV33), a T5-like phage of Siphoviridae lysed common phage types of STEC O157:H7 and not non-O157 E. coli. Moreover, STEC O157:H7 isolated from the same feedlot pen from which the phage was obtained, were highly susceptible to AKFV33. Adsorption rate constant and burst size were estimated to be 9.31×10−9 ml/min and 350 PFU/infected cell, respectively. The genome of AKVF33 was 108,853 bp (38.95% G+C), containing 160 open reading frames (ORFs), 22 tRNA genes and 32 strong promoters recognized by host RNA polymerase. Of 12 ORFs without homologues to T5-like phages, 7 predicted novel proteins while others exhibited low identity (<60%) to proteins in the National Centre for Biotechnology Information database. AKVF33 also lacked the L-shaped tail fiber protein typical of T5, but was predicted to have tail fibers comprised of 2 novel proteins with low identity (37–41%) to tail fibers of E. coli phage phiEco32 of Podoviridae, a putative side tail fiber protein of a prophage from E. coli IAI39 and a conserved domain protein of E. coli MS196-1. The receptor-binding tail protein (pb5) shared an overall identify of 29–72% to that of other T5-like phages, with no region coding for more than 6 amino acids in common. Proteomic analysis identified 4 structural proteins corresponding to the capsid, major tail, tail fiber and pore-forming tail tip (pb2). The genome of AKFV33 lacked regions coding for known virulence factors, integration-related proteins or antibiotic resistance determinants. Phage AKFV33 is a unique, highly lytic STEC O157:H7-specific T5-like phage that may have considerable potential as a pre- and post-harvest biocontrol agent.
PMCID: PMC3326045  PMID: 22514640

Results 1-25 (26)