Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Spatial moment dynamics for collective cell movement incorporating a neighbour-dependent directional bias 
Journal of the Royal Society Interface  2015;12(106):20150228.
The ability of cells to undergo collective movement plays a fundamental role in tissue repair, development and cancer. Interactions occurring at the level of individual cells may lead to the development of spatial structure which will affect the dynamics of migrating cells at a population level. Models that try to predict population-level behaviour often take a mean-field approach, which assumes that individuals interact with one another in proportion to their average density and ignores the presence of any small-scale spatial structure. In this work, we develop a lattice-free individual-based model (IBM) that uses random walk theory to model the stochastic interactions occurring at the scale of individual migrating cells. We incorporate a mechanism for local directional bias such that an individual's direction of movement is dependent on the degree of cell crowding in its neighbourhood. As an alternative to the mean-field approach, we also employ spatial moment theory to develop a population-level model which accounts for spatial structure and predicts how these individual-level interactions propagate to the scale of the whole population. The IBM is used to derive an equation for dynamics of the second spatial moment (the average density of pairs of cells) which incorporates the neighbour-dependent directional bias, and we solve this numerically for a spatially homogeneous case.
PMCID: PMC4424705  PMID: 25904529
collective cell movement; individual-based model; spatial moment dynamics; directed movement
2.  Spatial structure arising from neighbour-dependent bias in collective cell movement 
PeerJ  2016;4:e1689.
Mathematical models of collective cell movement often neglect the effects of spatial structure, such as clustering, on the population dynamics. Typically, they assume that individuals interact with one another in proportion to their average density (the mean-field assumption) which means that cell–cell interactions occurring over short spatial ranges are not accounted for. However, in vitro cell culture studies have shown that spatial correlations can play an important role in determining collective behaviour. Here, we take a combined experimental and modelling approach to explore how individual-level interactions give rise to spatial structure in a moving cell population. Using imaging data from in vitro experiments, we quantify the extent of spatial structure in a population of 3T3 fibroblast cells. To understand how this spatial structure arises, we develop a lattice-free individual-based model (IBM) and simulate cell movement in two spatial dimensions. Our model allows an individual’s direction of movement to be affected by interactions with other cells in its neighbourhood, providing insights into how directional bias generates spatial structure. We consider how this behaviour scales up to the population level by using the IBM to derive a continuum description in terms of the dynamics of spatial moments. In particular, we account for spatial correlations between cells by considering dynamics of the second spatial moment (the average density of pairs of cells). Our numerical results suggest that the moment dynamics description can provide a good approximation to averaged simulation results from the underlying IBM. Using our in vitro data, we estimate parameters for the model and show that it can generate similar spatial structure to that observed in a 3T3 fibroblast cell population.
PMCID: PMC4756733  PMID: 26893970
Collective movement; Cell migration; Spatial moment dynamics; Directed movement; Spatial correlations; Individual-based model
3.  Modelling Tradescantia fluminensis to assess long term survival 
PeerJ  2015;3:e1013.
We present a simple Poisson process model for the growth of Tradescantia fluminensis, an invasive plant species that inhibits the regeneration of native forest remnants in New Zealand. The model was parameterised with data derived from field experiments in New Zealand and then verified with independent data. The model gave good predictions which showed that its underlying assumptions are sound. However, this simple model had less predictive power for outputs based on variance suggesting that some assumptions were lacking. Therefore, we extended the model to include higher variability between plants thereby improving its predictions. This high variance model suggests that control measures that promote node death at the base of the plant or restrict the main stem growth rate will be more effective than those that reduce the number of branching events. The extended model forms a good basis for assessing the efficacy of various forms of control of this weed, including the recently-released leaf-feeding tradescantia leaf beetle (Neolema ogloblini).
PMCID: PMC4465954  PMID: 26082865
Invasive species; Branching process; Biocontrol; Stochastic model
4.  Taylor's law and body size in exploited marine ecosystems 
Ecology and Evolution  2012;2(12):3168-3178.
Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught.
PMCID: PMC3539009  PMID: 23301181
Balanced harvesting; density-mass allometry; fishing; power law; size spectrum; size-at-entry; variance-mass allometry
5.  Models of collective cell behaviour with crowding effects: comparing lattice-based and lattice-free approaches 
Individual-based models describing the migration and proliferation of a population of cells frequently restrict the cells to a predefined lattice. An implicit assumption of this type of lattice-based model is that a proliferative population will always eventually fill the lattice. Here, we develop a new lattice-free individual-based model that incorporates cell-to-cell crowding effects. We also derive approximate mean-field descriptions for the lattice-free model in two special cases motivated by commonly used experimental set-ups. Lattice-free simulation results are compared with these mean-field descriptions and with a corresponding lattice-based model. Data from a proliferation experiment are used to estimate the parameters for the new model, including the cell proliferation rate, showing that the model fits the data well. An important aspect of the lattice-free model is that the confluent cell density is not predefined, as with lattice-based models, but an emergent model property. As a consequence of the more realistic, irregular configuration of cells in the lattice-free model, the population growth rate is much slower at high cell densities and the population cannot reach the same confluent density as an equivalent lattice-based model.
PMCID: PMC3479911  PMID: 22696488
cell migration; cell proliferation; lattice-based; lattice-free; random walk
6.  A mathematical framework for modelling cambial surface evolution using a level set method 
Annals of Botany  2011;108(6):1001-1011.
Background and Aims
During their lifetime, tree stems take a series of successive nested shapes. Individual tree growth models traditionally focus on apical growth and architecture. However, cambial growth, which is distributed over a surface layer wrapping the whole organism, equally contributes to plant form and function. This study aims at providing a framework to simulate how organism shape evolves as a result of a secondary growth process that occurs at the cellular scale.
The development of the vascular cambium is modelled as an expanding surface using the level set method. The surface consists of multiple compartments following distinct expansion rules. Growth behaviour can be formulated as a mathematical function of surface state variables and independent variables to describe biological processes.
Key Results
The model was coupled to an architectural model and to a forest stand model to simulate cambium dynamics and wood formation at the scale of the organism. The model is able to simulate competition between cambia, surface irregularities and local features. Predicting the shapes associated with arbitrarily complex growth functions does not add complexity to the numerical method itself.
Despite their slenderness, it is sometimes useful to conceive of trees as expanding surfaces. The proposed mathematical framework provides a way to integrate through time and space the biological and physical mechanisms underlying cambium activity. It can be used either to test growth hypotheses or to generate detailed maps of wood internal structure.
PMCID: PMC3189832  PMID: 21470972
Dynamic model; level sets; surface growth; vascular cambium; wood formation
7.  Assessing Lévy walks as models of animal foraging 
The hypothesis that the optimal search strategy is a Lévy walk (LW) or Lévy flight, originally suggested in 1995, has generated an explosion of interest and controversy. Long-standing empirical evidence supporting the LW hypothesis has been overturned, while new models and data are constantly being published. Statistical methods have been criticized and new methods put forward. In parallel with the empirical studies, theoretical search models have been developed. Some theories have been disproved while others remain. Here, we gather together the current state of the art on the role of LWs in optimal foraging theory. We examine the body of theory underpinning the subject. Then we present new results showing that deviations from the idealized one-dimensional search model greatly reduce or remove the advantage of LWs. The search strategy of an LW with exponent μ = 2 is therefore not as robust as is widely thought. We also review the available techniques, and their potential pitfalls, for analysing field data. It is becoming increasingly recognized that there is a wide range of mechanisms that can lead to the apparent observation of power-law patterns. The consequence of this is that the detection of such patterns in field data implies neither that the foragers in question are performing an LW, nor that they have evolved to do so. We conclude that LWs are neither a universal optimal search strategy, nor are they as widespread in nature as was once thought.
PMCID: PMC3140726  PMID: 21632609
animal movement; efficiency; heavy-tailed; power law; random search; random walk
8.  Random walk models in biology 
Mathematical modelling of the movement of animals, micro-organisms and cells is of great relevance in the fields of biology, ecology and medicine. Movement models can take many different forms, but the most widely used are based on the extensions of simple random walk processes. In this review paper, our aim is twofold: to introduce the mathematics behind random walks in a straightforward manner and to explain how such models can be used to aid our understanding of biological processes. We introduce the mathematical theory behind the simple random walk and explain how this relates to Brownian motion and diffusive processes in general. We demonstrate how these simple models can be extended to include drift and waiting times or be used to calculate first passage times. We discuss biased random walks and show how hyperbolic models can be used to generate correlated random walks. We cover two main applications of the random walk model. Firstly, we review models and results relating to the movement, dispersal and population redistribution of animals and micro-organisms. This includes direct calculation of mean squared displacement, mean dispersal distance, tortuosity measures, as well as possible limitations of these model approaches. Secondly, oriented movement and chemotaxis models are reviewed. General hyperbolic models based on the linear transport equation are introduced and we show how a reinforced random walk can be used to model movement where the individual changes its environment. We discuss the applications of these models in the context of cell migration leading to blood vessel growth (angiogenesis). Finally, we discuss how the various random walk models and approaches are related and the connections that underpin many of the key processes involved.
PMCID: PMC2504494  PMID: 18426776
angiogenesis; chemotaxis; diffusion; dispersal; navigation; random walk
9.  An event-based model of superspreading in epidemics 
Many recent disease outbreaks (e.g. SARS, foot-and-mouth disease) exhibit superspreading, where relatively few individuals cause a large number of secondary cases. Epidemic models have previously treated this as a demographic phenomenon where each individual has an infectivity allocated at random from some distribution. Here, it is shown that superspreading can also be regarded as being caused by environmental variability, where superspreading events (SSEs) occur as a stochastic consequence of the complex network of interactions made by individuals. This interpretation based on SSEs is compared with data and its efficacy in evaluating epidemic control strategies is discussed.
PMCID: PMC2197209  PMID: 17255000
superspreading; epidemiology; branching process; environmental stochasticity

Results 1-9 (9)