Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Segmental chromosomal alterations lead to a higher risk of relapse in infants with MYCN-non-amplified localised unresectable/disseminated neuroblastoma (a SIOPEN collaborative study) 
British Journal of Cancer  2011;105(12):1940-1948.
In neuroblastoma (NB), the presence of segmental chromosome alterations (SCAs) is associated with a higher risk of relapse.
In order to analyse the role of SCAs in infants with localised unresectable/disseminated NB without MYCN amplification, we have performed an array CGH analysis of tumours from infants enroled in the prospective European INES trials.
Tumour samples from 218 out of 300 enroled patients could be analysed. Segmental chromosome alterations were observed in 11%, 20% and 59% of infants enroled in trials INES99.1 (localised unresectable NB), INES99.2 (stage 4s) and INES99.3 (stage 4) (P<0.0001). Progression-free survival was poorer in patients whose tumours harboured SCA, in the whole population and in trials INES99.1 and INES99.2, in the absence of clinical symptoms (log-rank test, P=0.0001, P=0.04 and P=0.0003, respectively). In multivariate analysis, a SCA genomic profile was the strongest predictor of poorer progression-free survival.
In infants with stage 4s MYCN-non-amplified NB, a SCA genomic profile identifies patients who will require upfront treatment even in the absence of other clinical indication for therapy, whereas in infants with localised unresectable NB, a genomic profile characterised by the absence of SCA identifies patients in whom treatment reduction might be possible. These findings will be implemented in a future international trial.
PMCID: PMC3251887  PMID: 22146831
neuroblastoma; infants; genomic profile; segmental chromosome alterations; prognosis
2.  MicroRNA-206 expression levels correlate with clinical behaviour of rhabdomyosarcomas 
British Journal of Cancer  2010;102(12):1769-1777.
Rhabdomyosarcomas (RMSs) are primarily paediatric sarcomas that resemble developing skeletal muscle. Our aim was to determine the effects of microRNAs (miRNA) that have been implicated in muscle development on the clinical behaviour of RMSs.
Expression levels of miR-1, miR-206, miR-133a and miR-133b were quantified by RT–PCR in 163 primary paediatric RMSs, plus control tissues, and correlated with clinico-pathological features. Correlations with parallel gene expression profiling data for 84 samples were used to identify pathways associated with miR-206. Synthetic miR-206 was transfected into RMS cell lines and phenotypic responses assessed.
Muscle-specific miRNAs levels were lower in RMSs compared with skeletal muscle but generally higher than in other normal tissues. Low miR-206 expression correlated with poor overall survival and was an independent predictor of shorter survival in metastatic embryonal and alveolar cases without PAX3/7-FOXO1 fusion genes. Low miR-206 expression also significantly correlated with high SIOP stage and the presence of metastases at diagnosis. High miR-206 expression strongly correlated with genes linked to muscle differentiation and low expression was associated with genes linked to MAPkinase and NFKappaB pathway activation. Increasing miR-206 expression in cell lines inhibited cell growth and migration and induced apoptosis that was associated with myogenic differentiation in some, but not all, cell lines.
miR-206 contributes to the clinical behaviour of RMSs and the pleiotropic effects of miR-206 supports therapeutic potential.
PMCID: PMC2883695  PMID: 20502458
rhabdomyosarcoma; microRNA; overall survival; expression profile; cell line
3.  Incidence and prognostic value of tumour cells detected by RT–PCR in peripheral blood stem cell collections from patients with Ewing tumour 
British Journal of Cancer  2006;95(10):1326-1333.
To retrospectively evaluate the incidence of tumour cell contamination of peripheral blood stem cell (PBSC) collections and to correlate these data with the clinical outcome after high-dose chemotherapy (HDCT) with stem cell rescue in patients with a high-risk Ewing tumour. Peripheral blood stem cell collections obtained from 171 patients were analysed. Tumour contamination was assessed by reverse transcriptase–polymerase chain reaction (RT–PCR). The files of 88 patients who underwent HDCT followed by PBSC reinfusion were reviewed in detail, and their outcome compared to the PBSC RT–PCR results. Seven of 88 PBSC collections (8%) contained tumour cells as detected by RT–PCR. Peripheral blood stem cells were collected after a median of five cycles of chemotherapy. No clinical factor predictive of tumour cell contamination of PBSC harvest could be identified. Event-free survival (EFS) and overall survival (OS) of the whole study population were 45.3 % and 51.8 % at 3 years from the date of the graft, respectively. Forty-five patients relapsed with a median time of 15 months after graft, only four of whom had tumour cell contamination of the PBSC harvest. Tumour cell contamination of PBSC collection is rare and does not seem to be associated with a significantly poorer EFS or OS in this high-risk population.
PMCID: PMC2360590  PMID: 17088915
ewing tumour; PBSC; tumour cell contamination; RT–PCR; outcome
4.  Early activated replication origins within the cell cycle-regulated histone H4 genes in Physarum. 
Nucleic Acids Research  1999;27(10):2091-2098.
It was previously shown that the two members of the cell cycle-regulated histone H4 gene family, H4-1 and H4-2, are replicated at the onset of S phase in the naturally synchronous plasmodium of Physarum polycephalum, suggesting that they are flanked by replication origins. It was further shown that a DNA fragment upstream of the H4-1 gene is able to confer autonomous replication of a plasmid in the budding yeast. In this paper, we re-investigated replication of the unlinked Physarum histone H4 genes by mapping the replication origin of these two loci using alkaline agarose gel and neutral/neutral 2-dimensional agarose gel electrophoreses. We showed that the two replicons containing the H4 genes are simultaneously activated at the onset of S phase and we mapped an efficient, bidirectional replication origin in the vicinity of each gene. Our data demonstrated that the Physarum sequence that functions as an ARS in yeast is not the site of replication initiation at the H4-1 locus. We also observed a stalling of the rightward moving replication fork downstream of the H4-1 gene, in a region where transient topoisomerase II sites were previously mapped. Our results further extend the concept of replication/transcription coupling in Physarum to cell cycle-regulated genes.
PMCID: PMC148428  PMID: 10219081
5.  Mapping of a replication origin within the promoter region of two unlinked, abundantly transcribed actin genes of Physarum polycephalum. 
Molecular and Cellular Biology  1996;16(3):968-976.
We analyzed the replication of two unlinked actin genes, ardB and ardC , which are abundantly transcribed in the naturally synchronous plasmodium of the slime mold Physarum polycephalum. Detection and size measurements of single-stranded nascent replication intermediates (RIs) demonstrate that these two genes are concomitantly replicated at the onset of the 3-h S phase and tightly linked to replication origins. Appearance of RIs on neutral-neutral two-dimensional gels at specific time points in early S phase and analysis of their structure confirmed these results and further established that, in both cases, an efficient, site-specific, bidirectional origin of replication is localized within the promoter region of the gene. We also determined similar elongation rates for the divergent replication forks of the ardC gene replicon. Finally, taking advantage of a restriction fragment length polymorphism, we studied allelic replicons and demonstrate similar localizations and a simultaneous firing of allelic replication origins. Computer search revealed a low level of homology between the promoters of ardB and ardC and, most notably, the absence of DNA sequences similar to the yeast autonomously replicating sequence consensus sequence in these Physarum origin regions. Our results with the ardB and ardC actin genes support the model of early replicating origins located within the promoter regions of abundantly transcribed genes in P. polycephalum.
PMCID: PMC231079  PMID: 8622700
6.  Processing in the external transcribed spacer of ribosomal RNA from Physarum polycephalum. 
Nucleic Acids Research  1986;14(8):3153-3166.
The rDNA of the myxomycete Physarum polycephalum is transcribed to give a 13.3 kb precursor of ribosomal RNA. At 1.7 kb downstream of the primary initiation site there is a processing site or a second initiation site. This site was studied by S1-mapping, DNA sequencing and electron microscopy. None of these methods could conclusively distinguish between the two formal possibilities. However, capping experiments indicate that rapid processing is taking place at this site rather than reinitiation. In addition, primary transcripts and processed molecules were assayed throughout the synchronous mitotic cycle. During all interphase stages newly initiated transcripts of rDNA and products of the first processing step are present in similar amounts, indicating control of initiation and not of maturation as being the main regulatory step for the accumulation of mature rRNAs. During the brief period of mitosis the level of newly initiated rRNA precursors is lowered.
PMCID: PMC339739  PMID: 3010228
7.  Mapping of a Physarum chromosomal origin of replication tightly linked to a developmentally-regulated profilin gene. 
Nucleic Acids Research  1992;20(13):3309-3315.
We compared the pattern of replication of two cell-type specific profilin genes in one developmental stage of the slime mold Physarum polycephalum. Taking advantage of the natural synchrony of S-phase within the plasmodium, we established that the actively transcribed profilin P gene is tightly linked to a chromosomal replication origin and is replicated at the onset of S-phase. In contrast, the inactive profilin A gene is not associated with a replication origin and it is duplicated in mid S-phase. Mapping by two-dimensional gel electrophoresis defines a short DNA fragment in the proximal upstream region of the profilin P gene from which bidirectional replication is initiated. We further provide an estimate of the kinetics of elongation of the replicon and demonstrate that the 2 alleles of the profilin P gene are coordinately replicated. All these results were obtained on total DNA preparations extracted from untreated cells. They provide a strong evidence for site specific initiation of DNA replication in Physarum.
PMCID: PMC312482  PMID: 1630902
8.  Site-specific initiation of DNA replication within the non-transcribed spacer of Physarum rDNA. 
Nucleic Acids Research  1995;23(9):1447-1453.
Physarum polycephalum rRNA genes are found on extrachromosomal 60 kb linear palindromic DNA molecules. Previous work using electron microscope visualization suggested that these molecules are duplicated from one of four potential replication origins located in the 24 kb central non-transcribed spacer [Vogt and Braun (1977) Eur. J. Biochem., 80, 557-566]. Considering the controversy on the nature of the replication origins in eukaryotic cells, where both site-specific or delocalized initiations have been described, we study here Physarum rDNA replication by two dimensional agarose gel electrophoresis and compare the results to those obtained by electron microscopy. Without the need of cell treatment or enrichment in replication intermediates, we detect hybridization signals corresponding to replicating rDNA fragments throughout the cell cycle, confirming that the synthesis of rDNA molecules is not under the control of S-phase. The patterns of replication intermediates along rDNA minichromosomes are consistent with the existence of four site-specific replication origins, whose localization in the central non-transcribed spacer is in agreement with the electron microscope mapping. It is also shown that, on a few molecules, at least two origins are active simultaneously.
PMCID: PMC306881  PMID: 7784195
9.  Replication timing of 10 developmentally regulated genes in Physarum polycephalum. 
Nucleic Acids Research  1989;17(2):553-566.
We have tested the hypothesis which stipulates that only early-replicating genes are capable of expression. Within one cell type of Physarum - the plasmodium - we defined the temporal order of replication of 10 genes which were known to be variably expressed in 4 different developmental stages of the Physarum life cycle. Southern analysis of density-labeled, bromodesoxyuridine-substituted DNA reveals that 4 genes presumably inactive within the plasmodium, were not restricted to any temporal compartment of S-phase: 1 is replicated in early S-phase, 2 in mid S-phase and 1 in late S-phase. On the other hand, 4 out of 6 active genes analysed are duplicated early, with the first 30% of the genome. Surprisingly, the two others active genes are replicated late in S-phase. By gene-dosage analysis, based on quantitation of hybridization signals from early and late replicating genes throughout S-phase, we could pinpoint the replication of one of these two genes at a stage where 80-85% of the genome has duplicated. Our results demonstrate that late replication during S-phase does not preclude gene activity.
PMCID: PMC331603  PMID: 2915922

Results 1-9 (9)