PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (47)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
1.  Regulation of RamA by RamR in Salmonella enterica Serovar Typhimurium: Isolation of a RamR Superrepressor 
Antimicrobial Agents and Chemotherapy  2012;56(11):6037-6040.
RamA is a transcription factor involved in regulating multidrug resistance in Salmonella enterica serovar Typhimurium SL1344. Green fluorescent protein (GFP) reporter fusions were exploited to investigate the regulation of RamA expression by RamR. We show that RamR represses the ramA promoter by binding to a palindromic sequence and describe a superrepressor RamR mutant that binds to the ramA promoter sequence more efficiently, thus exhibiting a ramA inactivated phenotype.
doi:10.1128/AAC.01320-12
PMCID: PMC3486581  PMID: 22948865
2.  Persistence of Transferable Extended-Spectrum-β-Lactamase Resistance in the Absence of Antibiotic Pressure 
The treatment of infections caused by antibiotic-resistant bacteria is one of the great challenges faced by clinicians in the 21st century. Antibiotic resistance genes are often transferred between bacteria by mobile genetic vectors called plasmids. It is commonly believed that removal of antibiotic pressure will reduce the numbers of antibiotic-resistant bacteria due to the perception that carriage of resistance imposes a fitness cost on the bacterium. This study investigated the ability of the plasmid pCT, a globally distributed plasmid that carries an extended-spectrum-β-lactamase (ESBL) resistance gene (blaCTX-M-14), to persist and disseminate in the absence of antibiotic pressure. We investigated key attributes in plasmid success, including conjugation frequencies, bacterial-host growth rates, ability to cause infection, and impact on the fitness of host strains. We also determined the contribution of the blaCTX-M-14 gene itself to the biology of the plasmid and host bacterium. Carriage of pCT was found to impose no detectable fitness cost on various bacterial hosts. An absence of antibiotic pressure and inactivation of the antibiotic resistance gene also had no effect on plasmid persistence, conjugation frequency, or bacterial-host biology. In conclusion, plasmids such as pCT have evolved to impose little impact on host strains. Therefore, the persistence of antibiotic resistance genes and their vectors is to be expected in the absence of antibiotic selective pressure regardless of antibiotic stewardship. Other means to reduce plasmid stability are needed to prevent the persistence of these vectors and the antibiotic resistance genes they carry.
doi:10.1128/AAC.00848-12
PMCID: PMC3421869  PMID: 22710119
3.  The Comprehensive Antibiotic Resistance Database 
The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; http://arpcard.mcmaster.ca). The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment.
doi:10.1128/AAC.00419-13
PMCID: PMC3697360  PMID: 23650175
4.  RamA, which controls expression of the MDR efflux pump AcrAB-TolC, is regulated by the Lon protease 
Objectives
RamA regulates the AcrAB-TolC multidrug efflux system. Using Salmonella Typhimurium, we investigated the stability of RamA and its impact on antibiotic resistance.
Methods
To detect RamA, we introduced ramA::3XFLAG::aph into plasmid pACYC184 and transformed this into Salmonella Typhimurium SL1344ramA::cat and lon::aph mutants. An N-terminus-deleted mutant [pACYC184ramA(Δ2-21)::3XFLAG::aph] in which the first 20 amino acids of RamA were deleted was also constructed. To determine the abundance and half-life of FLAG-tagged RamA, we induced RamA with chlorpromazine (50 mg/L) and carried out western blotting using anti-FLAG antibody. Susceptibility to antibiotics and phenotypic characterization of the lon mutant was also carried out.
Results
We show that on removal of chlorpromazine, a known inducer of ramA, the abundance of RamA decreased to pre-induced levels. However, in cells lacking functional Lon, we found that the RamA protein was not degraded. We also demonstrated that the 21 amino acid residues of the RamA N-terminus are required for recognition by the Lon protease. Antimicrobial susceptibility and phenotypic tests showed that the lon mutant was more susceptible to fluoroquinolone antibiotics, was filamentous when observed by microscopy and grew poorly, but showed no difference in motility or the ability to form a biofilm. There was also no difference in the ability of the lon mutant to invade human intestinal cells (INT-407).
Conclusions
In summary, we show that the ATP-dependent Lon protease plays an important role in regulating the expression of RamA and therefore multidrug resistance via AcrAB-TolC in Salmonella Typhimurium.
doi:10.1093/jac/dkt432
PMCID: PMC3922155  PMID: 24169580
Salmonella; transcription factors; proteolysis
5.  Clinically Relevant Mutant DNA Gyrase Alters Supercoiling, Changes the Transcriptome, and Confers Multidrug Resistance 
mBio  2013;4(4):e00273-13.
ABSTRACT
Bacterial DNA is maintained in a supercoiled state controlled by the action of topoisomerases. Alterations in supercoiling affect fundamental cellular processes, including transcription. Here, we show that substitution at position 87 of GyrA of Salmonella influences sensitivity to antibiotics, including nonquinolone drugs, alters global supercoiling, and results in an altered transcriptome with increased expression of stress response pathways. Decreased susceptibility to multiple antibiotics seen with a GyrA Asp87Gly mutant was not a result of increased efflux activity or reduced reactive-oxygen production. These data show that a frequently observed and clinically relevant substitution within GyrA results in altered expression of numerous genes, including those important in bacterial survival of stress, suggesting that GyrA mutants may have a selective advantage under specific conditions. Our findings help contextualize the high rate of quinolone resistance in pathogenic strains of bacteria and may partly explain why such mutant strains are evolutionarily successful.
IMPORTANCE
Fluoroquinolones are a powerful group of antibiotics that target bacterial enzymes involved in helping bacteria maintain the conformation of their chromosome. Mutations in the target enzymes allow bacteria to become resistant to these antibiotics, and fluoroquinolone resistance is common. We show here that these mutations also provide protection against a broad range of other antimicrobials by triggering a defensive stress response in the cell. This work suggests that fluoroquinolone resistance mutations may be beneficial under a range of conditions.
doi:10.1128/mBio.00273-13
PMCID: PMC3735185  PMID: 23882012
6.  Choice of Bacterial Growth Medium Alters the Transcriptome and Phenotype of Salmonella enterica Serovar Typhimurium 
PLoS ONE  2013;8(5):e63912.
The type of bacterial culture medium is an important consideration during design of any experimental protocol. The aim of this study was to understand the impact of medium choice on bacterial gene expression and physiology by comparing the transcriptome of Salmonella enterica SL1344 after growth in the widely used LB broth or the rationally designed MOPS minimal medium. Transcriptomics showed that after growth in MOPS minimal media, compared to LB, there was increased expression of 42 genes involved in amino acid synthesis and 23 genes coding for ABC transporters. Seven flagellar genes had decreased expression after growth in MOPS minimal medium and this correlated with a decreased motility. In both MOPS minimal medium and MEM expression of genes from SPI-2 was increased and the adhesion of S. Typhimurium to intestinal epithelial cells was higher compared to the levels after growth in LB. However, SL1344 invasion was not significantly altered by growth in either MOPs minimal media or MEM. Expression of SPI-2 was also measured using chromosomal GFP reporter fusions followed by flow cytometry which showed, for the first time, that the reduction in SPI-2 transcript after growth in different media related to a reduction in the proportion of the bacterial population expressing SPI-2. These data highlight the profound differences in the global transcriptome after in vitro growth in different media and show that choice of medium should be considered carefully during experimental design, particularly when virulence related phenotypes are being measured.
doi:10.1371/journal.pone.0063912
PMCID: PMC3660369  PMID: 23704954
7.  Dissemination of pCT-Like IncK Plasmids Harboring CTX-M-14 Extended-Spectrum β-Lactamase among Clinical Escherichia coli Isolates in the United Kingdom 
IncK plasmids encoding CTX-M-14 extended-spectrum β-lactamase (ESBL) and highly related to plasmid pCT were detected in 13 of 67 (19%) human clinical isolates of Escherichia coli with a group 9 CTX-M-type ESBL from the United Kingdom and in 2 quality assurance isolates. None of these E. coli strains was related to the cattle strain from which pCT was originally characterized.
doi:10.1128/AAC.00313-12
PMCID: PMC3370816  PMID: 22450980
8.  Resistance and Tolerance to Tropodithietic Acid, an Antimicrobial in Aquaculture, Is Hard To Select▿ †  
The antibacterial compound tropodithietic acid (TDA) is produced by bacteria of the marine Roseobacter clade and is thought to explain the fish probiotic properties of some roseobacters. The aim of the present study was to determine the antibacterial spectrum of TDA and the likelihood of development of TDA resistance. A bacterial extract containing 95% TDA was effective against a range of human-pathogenic bacteria, including both Gram-negative and Gram-positive bacteria. TDA was bactericidal against Salmonella enterica serovar Typhimurium SL1344 and Staphylococcus aureus NCTC 12493 and killed both growing and nongrowing cells. Several experimental approaches were used to select mutants resistant to TDA or subpopulations of strains with enhanced tolerance to TDA. No approach (single exposures to TDA extract administered via different methods, screening of a transposon library for resistant mutants, or prolonged exposure to incremental concentrations of TDA) resulted in resistant or tolerant strains. After more than 300 generations exposed to sub-MIC and MIC concentrations of a TDA-containing extract, strains tolerant to 2× the MIC of TDA for wild-type strains were selected, but the tolerance disappeared after one passage in medium without TDA extract. S. Typhimurium mutants with nonfunctional efflux pump and porin genes had the same TDA susceptibility as wild-type strains, suggesting that efflux pumps and porins are not involved in innate tolerance to TDA. TDA is a promising broad-spectrum antimicrobial in part due to the fact that enhanced tolerance is difficult to gain and that the TDA-tolerant phenotype appears to confer only low-level resistance and is very unstable.
doi:10.1128/AAC.01222-10
PMCID: PMC3067165  PMID: 21263047
9.  Overexpression of patA and patB, Which Encode ABC Transporters, Is Associated with Fluoroquinolone Resistance in Clinical Isolates of Streptococcus pneumoniae▿  
Fifty-seven clinical isolates of Streptococcus pneumoniae were divided into four groups based on their susceptibilities to the fluoroquinolones ciprofloxacin and norfloxacin and the dyes ethidium bromide and acriflavine. Comparative reverse transcription-PCR was used to determine the level of expression of the genes patA and patB, which encode putative ABC transporters. Overexpression was observed in 14 of the 15 isolates that were resistant to both fluoroquinolones and dyes and in only 3 of 24 of those resistant to fluoroquinolones only. Isolates overexpressing patA and patB accumulated significantly less of the fluorescent dye Hoechst 33342 than wild-type isolates, suggesting that PatA and PatB are involved in efflux. Inactivation of patA and patB by in vitro mariner mutagenesis conferred hypersusceptibility to ethidium bromide and acriflavine in all isolates tested and lowered the MICs of ciprofloxacin in the patAB-overproducing and/or fluoroquinolone-resistant isolates. These data represent the first observation of overexpression of patA and patB in clinical isolates and show that PatA and PatB play a clinically relevant role in fluoroquinolone resistance.
doi:10.1128/AAC.00672-10
PMCID: PMC3019642  PMID: 20937787
10.  Complete Sequence and Molecular Epidemiology of IncK Epidemic Plasmid Encoding blaCTX-M-14 
Emerging Infectious Diseases  2011;17(4):645-652.
This plasmid is disseminated worldwide in Escherichia coli isolated from humans and animals.
Antimicrobial drug resistance is a global challenge for the 21st century with the emergence of resistant bacterial strains worldwide. Transferable resistance to β-lactam antimicrobial drugs, mediated by production of extended-spectrum β-lactamases (ESBLs), is of particular concern. In 2004, an ESBL-carrying IncK plasmid (pCT) was isolated from cattle in the United Kingdom. The sequence was a 93,629-bp plasmid encoding a single antimicrobial drug resistance gene, blaCTX-M-14. From this information, PCRs identifying novel features of pCT were designed and applied to isolates from several countries, showing that the plasmid has disseminated worldwide in bacteria from humans and animals. Complete DNA sequences can be used as a platform to develop rapid epidemiologic tools to identify and trace the spread of plasmids in clinically relevant pathogens, thus facilitating a better understanding of their distribution and ability to transfer between bacteria of humans and animals.
doi:10.3201/eid1704.101009
PMCID: PMC3377399  PMID: 21470454
Bacteria; Escherichia coli; antimicrobial drug resistance; extended-spectrum beta-lactamase; CTX-M; plasmid; epidemiology; research
11.  Exploiting the Role of TolC in Pathogenicity: Identification of a Bacteriophage for Eradication of Salmonella Serovars from Poultry ▿  
Using a screening procedure, three bacteriophages, ST27, ST29, and ST35, were identified with selective activity for Salmonella enterica serovar Typhimurium (SL1344) but not SL1344 tolC::aph. Overproduction of TolC led to a lower efficiency of plating (EOP), further suggesting that TolC was the target receptor. Activity against other serovars of Salmonella was observed but not against other species of Enterobacteriaceae. This study provides proof of principle that bacteriophages can be active against the outer membrane protein of tripartite resistance-nodulation-division (RND) efflux pumps and so could be used to reduce the numbers of Salmonella cells in animals reared for food production.
doi:10.1128/AEM.02681-09
PMCID: PMC2832399  PMID: 20080996
12.  RamA, a Member of the AraC/XylS Family, Influences Both Virulence and Efflux in Salmonella enterica Serovar Typhimurium ▿ †  
Journal of Bacteriology  2010;192(6):1607-1616.
The transcriptomes of Salmonella enterica serovar Typhimurium SL1344 lacking a functional ramA or ramR or with plasmid-mediated high-level overexpression of ramA were compared to those of the wild-type parental strain. Inactivation of ramA led to increased expression of 14 SPI-1 genes and decreased expression of three SPI-2 genes, and it altered expression of ribosomal biosynthetic genes and several amino acid biosynthetic pathways. Furthermore, disruption of ramA led to decreased survival within RAW 264.7 mouse macrophages and attenuation within the BALB/c ByJ mouse model. Highly overexpressed ramA led to increased expression of genes encoding multidrug resistance (MDR) efflux pumps, including acrAB, acrEF, and tolC. Decreased expression of 34 Salmonella pathogenicity island (SPI) 1 and 2 genes, decreased SipC production, decreased adhesion to and survival within macrophages, and decreased colonization of Caenorhabditis elegans were also seen. Disruption of ramR led to the increased expression of ramA, acrAB, and tolC, but not to the same level as when ramA was overexpressed on a plasmid. Inactivation of ramR had a more limited effect on pathogenicity gene expression. In silico analysis of a suggested RamA-binding consensus sequence identified target genes, including ramR, acrA, tolC, sipABC, and ssrA. This study demonstrates that the regulation of a mechanism of MDR and expression of virulence genes show considerable overlap, and we postulate that such a mechanism is dependent on transcriptional activator concentration and promoter sensitivity. However, we have no evidence to support the hypothesis that increased MDR via RamA regulation of AcrAB-TolC gives rise to a hypervirulent strain.
doi:10.1128/JB.01517-09
PMCID: PMC2832520  PMID: 20081028
13.  Mechanisms of Resistance in Nontyphoidal Salmonella enterica Strains Exhibiting a Nonclassical Quinolone Resistance Phenotype▿  
Nontyphoidal Salmonella enterica strains with a nonclassical quinolone resistance phenotype were isolated from patients returning from Thailand or Malaysia to Finland. A total of 10 isolates of seven serovars were studied in detail, all of which had reduced susceptibility (MIC ≥ 0.125 μg/ml) to ciprofloxacin but were either susceptible or showed only low-level resistance (MIC ≤ 32 μg/ml) to nalidixic acid. Phenotypic characterization included susceptibility testing by the agar dilution method and investigation of efflux activity. Genotypic characterization included the screening of mutations in the quinolone resistance-determining regions (QRDR) of gyrA, gyrB, parC, and parE by PCR and denaturing high-pressure liquid chromatography and the amplification of plasmid-mediated quinolone resistance (PMQR) genes qnrA, qnrB, qnrS, qnrD, aac(6′)-Ib-cr, and qepA by PCR. PMQR was confirmed by plasmid analysis, Southern hybridization, and plasmid transfer. No mutations in the QRDRs of gyrA, gyrB, parC, or parE were detected with the exception of a Thr57-Ser substitution within ParC seen in all but the S. enterica serovar Typhimurium strains. The qnrA and qnrS genes were the only PMQR determinants detected. Plasmids carrying qnr alleles were transferable in vitro, and the resistance phenotype was reproducible in Escherichia coli DH5α transformants. These data demonstrate the emergence of a highly mobile qnr genotype that, in the absence of mutation within topoisomerase genes, confers the nontypical quinolone resistance phenotype in S. enterica isolates. The qnr resistance mechanism enables bacteria to survive elevated quinolone concentrations, and therefore, strains carrying qnr alleles may be able to expand during fluoroquinolone treatment. This is of concern since nonclassical quinolone resistance is plasmid mediated and therefore mobilizable.
doi:10.1128/AAC.00121-09
PMCID: PMC2737843  PMID: 19596880
14.  β-Lactamase-Mediated β-Lactam Resistance in Campylobacter Species: Prevalence of Cj0299 (blaOXA-61) and Evidence for a Novel β-Lactamase in C. jejuni▿  
Fifty-two percent of 1,288 poultry isolates of campylobacters were ampicillin resistant, and resistance was more common among Campylobacter coli isolates (67.4%) than among Campylobacter jejuni isolates (47.5%). Production of β-lactamase was typically associated with resistance to ampicillin, amoxicillin (amoxicilline), penicillin, and ticarcillin. Regardless of β-lactamase production, all isolates were resistant to piperacillin (MICs ≥ 256 μg/ml), and most were resistant to carbenicillin, cloxacillin, and cephalosporins. Of all ampicillin-resistant campylobacters tested, 91% (347/380) carried the blaOXA-61 gene, and 77% (136/175) of those tested with nitrocefin produced a β-lactamase, presumably OXA-61. The isoelectric point (pI) of OXA-61 was 8.7, and the molecular mass was 31.0 kDa. Insertional inactivation of blaOXA-61 in C. jejuni NCTC 11168 and two ampicillin-resistant isolates resulted in increased susceptibility to ampicillin, co-amoxiclav (amoxicillin and clavulanic acid), penicillin, carbenicillin, oxacillin, and piperacillin, but the effects on MICs of cephalosporins and imipenem were negligible. Some C. jejuni isolates that lacked blaOXA-61 produced a β-lactamase, CjBla2, with a pI of 9.2 and molecular mass of 32.4 kDa. Mass spectrometry confirmed that the most prevalent β-lactamase was the product of blaOXA-61, but CjBla2 was not identified. OXA-61 is prevalent among Campylobacter spp. of veterinary origin and is similar to the β-lactamase previously reported in human isolates. Production of OXA-61 was associated with resistance to penams but not cephalosporins. Co-amoxiclav remained active against all isolates tested.
doi:10.1128/AAC.01655-08
PMCID: PMC2715628  PMID: 19506058
15.  The Global Consequence of Disruption of the AcrAB-TolC Efflux Pump in Salmonella enterica Includes Reduced Expression of SPI-1 and Other Attributes Required To Infect the Host▿ †  
Journal of Bacteriology  2009;191(13):4276-4285.
The mechanisms by which RND pumps contribute to pathogenicity are currently not understood. Using the AcrAB-TolC system as a paradigm multidrug-resistant efflux pump and Salmonella enterica serovar Typhimurium as a model pathogen, we have demonstrated that AcrA, AcrB, and TolC are each required for efficient adhesion to and invasion of epithelial cells and macrophages by Salmonella in vitro. In addition, AcrB and TolC are necessary for Salmonella to colonize poultry. Mutants lacking acrA, acrB, or tolC showed differential expression of major operons and proteins involved in pathogenesis. These included chemotaxis and motility genes, including cheWY and flgLMK and 14 Salmonella pathogenicity island (SPI)-1-encoded type III secretion system genes, including sopE, and associated effector proteins. Reverse transcription-PCR confirmed these data for identical mutants in two other S. Typhimurium backgrounds. Western blotting showed reduced production of SipA, SipB, and SipC. The absence of AcrB or TolC also caused widespread repression of chemotaxis and motility genes in these mutants, and for acrB::aph, this was associated with decreased motility. For mutants lacking a functional acrA or acrB gene, the nap and nir operons were repressed, and both mutants grew poorly in anaerobic conditions. All phenotypes were restored to that of the wild type by trans-complementation with the wild-type allele of the respective inactivated gene. These data explain how mutants lacking a component of AcrAB-TolC are attenuated and that this phenotype is a result of decreased expression of numerous genes encoding proteins involved in pathogenicity. The link between antibiotic resistance and pathogenicity establishes the AcrAB-TolC system as fundamental to the biology of Salmonella.
doi:10.1128/JB.00363-09
PMCID: PMC2698494  PMID: 19411325
16.  Reduced Fluoroquinolone Susceptibility in Salmonella enterica Isolates from Travelers, Finland 
Emerging Infectious Diseases  2009;15(5):809-812.
We tested the fluoroquinolone susceptibility of 499 Salmonella enterica isolates collected from travelers returning to Finland during 2003–2007. Among isolates from travelers to Thailand and Malaysia, reduced fluoroquinolone susceptibility decreased from 65% to 22% (p = 0.002). All isolates showing nonclassical quinolone resistance were from travelers to these 2 countries.
doi:10.3201/eid1505.080849
PMCID: PMC2687029  PMID: 19402977
Antimicrobial resistance; enteric infections; nonclonal; reduced susceptibility; Salmonella enterica; serovar; travelers’ diarrhea; Finland; dispatch
17.  RamA Confers Multidrug Resistance in Salmonella enterica via Increased Expression of acrB, Which Is Inhibited by Chlorpromazine ▿  
Antimicrobial Agents and Chemotherapy  2008;52(10):3604-3611.
Salmonella enterica serovar Typhimurium SL1344, in which efflux pump genes (acrB, acrD, acrF, tolC) or regulatory genes thereof (marA, soxS, ramA) were inactivated, was grown in the presence of 240 antimicrobial and nonantimicrobial agents in the Biolog Phenotype MicroArray. Mutants lacking tolC, acrB, and ramA grew significantly worse than other mutants in the presence of 48 agents (some of which have not previously been identified as substrates of AcrAB-TolC) and particularly poorly in the presence of phenothiazines, which are human antipsychotics. MIC testing revealed that the phenothiazine chlorpromazine had antimicrobial activity and synergized with common antibiotics against different Salmonella serovars and SL1344. Chlorpromazine increased the intracellular accumulation of ethidium bromide, which was ablated in mutants lacking acrB, suggesting an interaction with AcrB. High-level but not low-level overexpression of ramA increased the expression of acrB; conferred resistance to chloramphenicol, tetracycline, nalidixic acid, and triclosan and organic solvent tolerance; and increased the amount of ethidium bromide accumulated. Chlorpromazine induced the modest overproduction of ramA but repressed acrB. These data suggest that phenothiazines are not efflux pump inhibitors but influence gene expression, including that of acrB, which confers the synergy with antimicrobials observed.
doi:10.1128/AAC.00661-08
PMCID: PMC2565896  PMID: 18694955
18.  The Efflux Pump Inhibitor Reserpine Selects Multidrug-Resistant Streptococcus pneumoniae Strains That Overexpress the ABC Transporters PatA and PatB▿ †  
One way to combat multidrug-resistant microorganisms is the use of efflux pump inhibitors (EPIs). Spontaneous mutants resistant to the EPI reserpine selected from Streptococcus pneumoniae NCTC 7465 and R6 at a frequency suggestive of a single mutational event were also multidrug resistant. No mutations in pmrA (which encodes the efflux protein PmrA) were detected, and the expression of pmrA was unaltered in all mutants. In the reserpine-resistant multidrug-resistant mutants, the overexpression of both patA and patB, which encode ABC transporters, was associated with accumulation of low concentrations of antibiotics and dyes. The addition of sodium orthovanadate, an inhibitor of ABC efflux pumps, or the insertional inactivation of either gene restored wild-type antibiotic susceptibility and wild-type levels of accumulation. Only when patA was insertionally inactivated were both multidrug resistance and reserpine resistance lost. Strains in which patA was insertionally inactivated grew significantly more slowly than the wild type. These data indicate that the overexpression of both patA and patB confers multidrug resistance in S. pneumoniae but that only patA is involved in reserpine resistance. The selection of reserpine-resistant multidrug-resistant pneumococci has implications for analogous systems in other bacteria or in cancer.
doi:10.1128/AAC.01644-07
PMCID: PMC2346654  PMID: 18362193
19.  Phenotypic and Proteomic Characterization of Multiply Antibiotic-Resistant Variants of Salmonella enterica Serovar Typhimurium Selected Following Exposure to Disinfectants▿ † 
In previous work, Salmonella enterica serovar Typhimurium strain SL1344 was exposed to sublethal concentrations of three widely used farm disinfectants in daily serial passages for 7 days in an attempt to investigate possible links between the use of disinfectants and antimicrobial resistance. Stable variants OXCR1, QACFGR2, and TOPR2 were obtained following treatment with an oxidizing compound blend, a quaternary ammonium disinfectant containing formaldehyde and glutaraldehyde, and a tar acid-based disinfectant, respectively. All variants exhibited ca. fourfold-reduced susceptibility to ciprofloxacin, chloramphenicol, tetracycline, and ampicillin. This coincided with reduced levels of outer membrane proteins for all strains and high levels of AcrAB-TolC for OXCR1 and QACFGR2, as demonstrated by two-dimensional high-performance liquid chromatography-mass spectrometry. The protein profiles of OXCR1 and QACFGR2 were similar, but they were different from that of TOPR2. An array of different proteins protecting against oxidants, nitroaromatics, disulfides, and peroxides were overexpressed in all strains. The growth and motility of variants were reduced compared to the growth and motility of the parent strain, the expression of several virulence proteins was altered, and the invasiveness in an enteric epithelial cell line was reduced. The colony morphology of OXCR1 and QACFGR2 was smooth, and both variants exhibited a loss of modal distribution of the lipopolysaccharide O-antigen chain length, favoring the production of short O-antigen chain molecules. Metabolic changes were also detected, suggesting that there was increased protein synthesis and a shift from oxidative phosphorylation to substrate level phosphorylation. In this study, we obtained evidence that farm disinfectants can select for strains with reduced susceptibility to antibiotics, and here we describe changes in protein expression in such strains.
doi:10.1128/AEM.01931-07
PMCID: PMC2258635  PMID: 18083849
20.  Modification of Enrofloxacin Treatment Regimens for Poultry Experimentally Infected with Salmonella enterica Serovar Typhimurium DT104 To Minimize Selection of Resistance▿  
Antimicrobial Agents and Chemotherapy  2006;50(12):4030-4037.
We hypothesized that higher doses of fluoroquinolones for a shorter duration could maintain efficacy (as measured by reduction in bacterial count) while reducing selection in chickens of bacteria with reduced susceptibility. Chicks were infected with Salmonella enterica serovar Typhimurium DT104 and treated 1 week later with enrofloxacin at the recommended dose for 5 days (water dose adjusted to give 10 mg/kg of body weight of birds or equivalence, i.e., water at 50 ppm) or at 2.5 or 5 times the recommended dose for 2 days or 1 day, respectively. The dose was delivered continuously (ppm) or pulsed in the water (mg/kg) or by gavage (mg/kg). In vitro in sera, increasing concentrations of 0.5 to 8 μg/ml enrofloxacin correlated with increased activity. In vivo, the efficacy of the 1-day treatment was significantly less than that of the 2- and 5-day treatments. The 2-day treatments showed efficacy similar to that of the 5-day treatment in all but one repeat treatment group and significantly (P < 0.01) reduced the Salmonella counts. Dosing at 2.5× the recommended dose and pulsed dosing both increased the peak antibiotic concentrations in cecal contents, liver, lung, and sera as determined by high-pressure liquid chromatography. There was limited evidence that shorter treatment regimens (in particular the 1-day regimen) selected for fewer strains with reduced susceptibility. In conclusion, the 2-day treatment would overall require a shorter withholding time than the 5-day treatment and, in view of the increased peak antibiotic concentrations, may give rise to improved efficacy, in particular for treating respiratory and systemic infections. However, it would be necessary to validate the 2-day regimen in a field situation and in particular against respiratory and systemic infections to validate or refute this hypothesis.
doi:10.1128/AAC.00525-06
PMCID: PMC1694010  PMID: 17030564
21.  Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux Pumps in Bacteria 
Clinical Microbiology Reviews  2006;19(2):382-402.
Efflux pump genes and proteins are present in both antibiotic-susceptible and antibiotic-resistant bacteria. Pumps may be specific for one substrate or may transport a range of structurally dissimilar compounds (including antibiotics of multiple classes); such pumps can be associated with multiple drug (antibiotic) resistance (MDR). However, the clinical relevance of efflux-mediated resistance is species, drug, and infection dependent. This review focuses on chromosomally encoded pumps in bacteria that cause infections in humans. Recent structural data provide valuable insights into the mechanisms of drug transport. MDR efflux pumps contribute to antibiotic resistance in bacteria in several ways: (i) inherent resistance to an entire class of agents, (ii) inherent resistance to specific agents, and (iii) resistance conferred by overexpression of an efflux pump. Enhanced efflux can be mediated by mutations in (i) the local repressor gene, (ii) a global regulatory gene, (iii) the promoter region of the transporter gene, or (iv) insertion elements upstream of the transporter gene. Some data suggest that resistance nodulation division systems are important in pathogenicity and/or survival in a particular ecological niche. Inhibitors of various efflux pump systems have been described; typically these are plant alkaloids, but as yet no product has been marketed.
doi:10.1128/CMR.19.2.382-402.2006
PMCID: PMC1471989  PMID: 16614254
23.  Medium Plays a Role in Determining Expression of acrB, marA, and soxS in Escherichia coli 
Analysis of expression of acrB, marA, and soxS in rich and minimal media, at early and late logarithmic growth phases, showed that acrB had increased expression in minimal medium compared to rich medium, but expression decreased dose dependently upon exposure to ciprofloxacin.
doi:10.1128/AAC.50.3.1071-1074.2006
PMCID: PMC1426439  PMID: 16495271
24.  Involvement of the Putative ATP-Dependent Efflux Proteins PatA and PatB in Fluoroquinolone Resistance of a Multidrug-Resistant Mutant of Streptococcus pneumoniae 
The multidrug-resistant mutant Streptococcus pneumoniae M22 constitutively overexpresses two genes (patA and patB) that encode proteins homologous to known efflux proteins belonging to the ABC transporter family. It is shown here that PatA and PatB were strongly induced by quinolone antibiotics and distamycin in fluoroquinolone-sensitive strains. PatA was very important for growth of S. pneumoniae, and it could not be disrupted in strain M22. PatB appeared to control metabolic activity, particularly in amino acid biosynthesis, and it may have a pivotal role in coordination of the response to quinolone antibiotics. The induction of PatA and PatB by antibiotics showed a pattern similar to that exhibited by SP1861, a homologue of ABC-type transporters of choline and other osmoprotectants. A second group of quinolone-induced transporter genes comprising SP1587 and SP0287, which are homologues of, respectively, oxalate/formate antiporters and xanthine or uracil permeases belonging to the major facilitator family, showed a different pattern of induction by other antibiotics. There was no evidence for the involvement of PmrA, the putative proton-dependent multidrug transporter that has been implicated in norfloxacin resistance, in the response to quinolone antibiotics in either the resistant mutant or the fluoroquinolone-sensitive strains.
doi:10.1128/AAC.50.2.685-693.2006
PMCID: PMC1366865  PMID: 16436727
25.  Global Transcriptome Analysis of the Responses of a Fluoroquinolone-Resistant Streptococcus pneumoniae Mutant and Its Parent to Ciprofloxacin 
Streptococcus pneumoniae M22 is a multidrug-resistant mutant selected after exposure of capsulated wild-type S. pneumoniae NCTC 7465 (strain M4) to ciprofloxacin. DNA microarray analysis comparing the gene expression profiles of strain M22 with those of strain M4 showed that strain M22 constitutively expressed 22 genes at levels higher than those observed in strain M4 under all conditions studied. These included the genes encoding the enzymes involved in branched-chain amino acid biosynthesis and two genes (patA and patB) with sequences suggestive of ABC transporter proteins. Expression of the patA and patB genes was induced by ciprofloxacin in both strains, but in strain M4 it only reached the levels observed in strain M22 after long incubation with high concentrations of ciprofloxacin. The altered expression profile observed with strain M22 suggested that the mutation or mutations acquired during resistance selection bring the cell into a state in which the expression of critical genes is preemptively altered to correct for the potential effects of ciprofloxacin on gene expression in the parent strain.
doi:10.1128/AAC.50.1.269-278.2006
PMCID: PMC1346767  PMID: 16377697

Results 1-25 (47)