PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Probabilistic classification learning with corrective feedback is associated with in vivo striatal dopamine release in the ventral striatum, while learning without feedback is not 
Human Brain Mapping  2014;35(10):5106-5115.
The basal ganglia (BG) mediate certain types of procedural learning, such as probabilistic classification learning on the ‘weather prediction task’ (WPT). Patients with Parkinson's disease (PD), who have BG dysfunction, are impaired at WPT-learning, but it remains unclear what component of the WPT is important for learning to occur. We tested the hypothesis that learning through processing of corrective feedback is the essential component and is associated with release of striatal dopamine. We employed two WPT paradigms, either involving learning via processing of corrective feedback (FB) or in a paired associate manner (PA). To test the prediction that learning on the FB but not PA paradigm would be associated with dopamine release in the striatum, we used serial 11C-raclopride (RAC) positron emission tomography (PET), to investigate striatal dopamine release during FB and PA WPT-learning in healthy individuals. Two groups, FB, (n = 7) and PA (n = 8), underwent RAC PET twice, once while performing the WPT and once during a control task. Based on a region-of-interest approach, striatal RAC-binding potentials reduced by 13–17% in the right ventral striatum when performing the FB compared to control task, indicating release of synaptic dopamine. In contrast, right ventral striatal RAC binding non-significantly increased by 9% during the PA task. While differences between the FB and PA versions of the WPT in effort and decision-making is also relevant, we conclude striatal dopamine is released during FB-based WPT-learning, implicating the striatum and its dopamine connections in mediating learning with FB.
doi:10.1002/hbm.22536
PMCID: PMC4285817  PMID: 24777947
basal ganglia; 11C-raclopride positron emission tomography; non-motor skill learning; probabilistic learning; procedural learning; weather prediction task
2.  Long-term Clinical Outcome of Fetal Cell Transplantation for Parkinson Disease Two Case Reports 
JAMA neurology  2014;71(1):83-87.
IMPORTANCE
Recent advances in stem cell technologies have rekindled an interest in the use of cell replacement strategies for patients with Parkinson disease. This study reports the very long-term clinical outcomes of fetal cell transplantation in 2 patients with Parkinson disease. Such long-term follow-up data can usefully inform on the potential efficacy of this approach, as well as the design of trials for its further evaluation.
OBSERVATIONS
Two patients received intrastriatal grafts of human fetal ventral mesencephalic tissue, rich in dopaminergic neuroblasts, as restorative treatment for their Parkinson disease. To evaluate the very long-term efficacy of the grafts, clinical assessments were performed 18 and 15 years posttransplantation. Motor improvements gained gradually over the first postoperative years were sustained up to 18 years posttransplantation, while both patients have discontinued, and remained free of any, pharmacological dopaminergic therapy.
CONCLUSIONS AND RELEVANCE
The results from these 2 cases indicate that dopaminergic cell transplantation can offer very long-term symptomatic relief in patients with Parkinson disease and provide proof-of-concept support for future clinical trials using fetal or stem cell therapies.
doi:10.1001/jamaneurol.2013.4749
PMCID: PMC4235249  PMID: 24217017
3.  Serotonergic mechanisms responsible for levodopa-induced dyskinesias in Parkinson’s disease patients 
The Journal of Clinical Investigation  2014;124(3):1340-1349.
Levodopa-induced dyskinesias (LIDs) are the most common and disabling adverse motor effect of therapy in Parkinson’s disease (PD) patients. In this study, we investigated serotonergic mechanisms in LIDs development in PD patients using 11C-DASB PET to evaluate serotonin terminal function and 11C-raclopride PET to evaluate dopamine release. PD patients with LIDs showed relative preservation of serotonergic terminals throughout their disease. Identical levodopa doses induced markedly higher striatal synaptic dopamine concentrations in PD patients with LIDs compared with PD patients with stable responses to levodopa. Oral administration of the serotonin receptor type 1A agonist buspirone prior to levodopa reduced levodopa-evoked striatal synaptic dopamine increases and attenuated LIDs. PD patients with LIDs that exhibited greater decreases in synaptic dopamine after buspirone pretreatment had higher levels of serotonergic terminal functional integrity. Buspirone-associated modulation of dopamine levels was greater in PD patients with mild LIDs compared with those with more severe LIDs. These findings indicate that striatal serotonergic terminals contribute to LIDs pathophysiology via aberrant processing of exogenous levodopa and release of dopamine as false neurotransmitter in the denervated striatum of PD patients with LIDs. Our results also support the development of selective serotonin receptor type 1A agonists for use as antidyskinetic agents in PD.
doi:10.1172/JCI71640
PMCID: PMC3934188  PMID: 24531549
4.  Clinical peculiarities of tuberculosis 
BMC Infectious Diseases  2014;14(Suppl 1):S4.
The ongoing spread of tuberculosis (TB) in poor resource countries and the recently increasing incidence in high resource countries lead to the need of updated knowledge for clinicians, particularly for pediatricians. The purpose of this article is to provide an overview on the most important peculiarities of TB in children. Children are less contagious than adults, but the risk of progression to active disease is higher in infants and children as compared to the subsequent ages. Diagnosis of TB in children is more difficult than in adults, because few signs are associated with primary infection, interferon-gamma release assays and tuberculin skin test are less reliable in younger children, M. tuberculosis is more rarely detected in gastric aspirates than in smears in adults and radiological findings are often not specific. Treatment of latent TB is always necessary in young children, whereas it is recommended in older children, as well as in adults, only in particular conditions. Antimycobacterial drugs are generally better tolerated in children as compared to adults, but off-label use of second-line antimycobacterial drugs is increasing, because of spreading of multidrug resistant TB worldwide. Given that TB is a disease which often involves more than one member in a family, a closer collaboration is needed between pediatricians and clinicians who take care of adults.
doi:10.1186/1471-2334-14-S1-S4
PMCID: PMC4015485  PMID: 24564419
5.  Serotonergic loss in motor circuitries correlates with severity of action-postural tremor in PD 
Neurology  2013;80(20):1850-1855.
Objective:
The underlying pathophysiology of tremor in Parkinson disease (PD) is unclear; however, it is known that tremor does not appear to be as responsive to dopaminergic medication as bradykinesia or rigidity. It is suggested that serotonergic dysfunction could have a role in tremor development.
Methods:
Using 11C-DASB PET, a marker of serotonin transporter binding, and clinical observations, we have investigated function of serotonergic terminals in 12 patients with tremor-predominant and 12 with akinetic-rigid PD. Findings were compared with those of 12 healthy controls.
Results:
Reductions of 11C-DASB in caudate, putamen, and raphe nuclei significantly correlated with tremor severity on posture and action, but not with resting tremor. The tremor-predominant group also showed reductions of 11C-DASB in other regions involved in motor circuitry, including the thalamus and Brodmann areas 4 and 10.
Conclusions:
Our findings support a role for serotonergic dysfunction in motor circuitries in the generation of postural tremor in PD.
doi:10.1212/WNL.0b013e318292a31d
PMCID: PMC3908354  PMID: 23596065
6.  Increased PK11195 PET binding in the cortex of patients with MS correlates with disability 
Neurology  2012;79(6):523-530.
Objective:
Activated microglia are thought to play a major role in cortical gray matter (GM) demyelination in multiple sclerosis (MS). Our objective was to evaluate microglial activation in cortical GM of patients with MS in vivo and to explore its relationship to measures of disability.
Methods:
Using PET and optimized modeling and segmentation procedures, we investigated cortical 11C-PK11195 (PK11195) binding in patients with relapsing-remitting MS (RRMS), patients with secondary progressive MS (SPMS), and healthy controls. Disability was assessed with the Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Impact Scale (MSIS-29).
Results:
Patients with MS showed increased cortical GM PK11195 binding relative to controls, which was multifocal and highest in the postcentral, middle frontal, anterior orbital, fusiform, and parahippocampal gyri. Patients with SPMS also showed additional increases in precentral, superior parietal, lingual and anterior superior, medial and inferior temporal gyri. Total cortical GM PK11195 binding correlated with EDSS scores, with a stronger correlation for the subgroup of patients with SPMS. In patients with SPMS, PK11195 binding also correlated with MSIS-29 scores. No correlation with disability measures was seen for PK11195 binding in white matter. Higher EDSS scores correlated with higher levels of GM PK11195 binding in the postcentral gyrus for patients with RRMS and in precentral gyrus for those with SPMS.
Conclusions:
Microglial activation in cortical GM of patients with MS can be assessed in vivo. The distribution is not uniform and shows a relationship to clinical disability. We speculate that the increased PK11195 binding corresponds to enhanced microglial activation described in postmortem SPMS cortical GM.
doi:10.1212/WNL.0b013e3182635645
PMCID: PMC3413767  PMID: 22764258
7.  Striatal dopamine D2/D3 receptor binding in pathological gambling is correlated with mood-related impulsivity 
Neuroimage  2012;63(1):40-46.
Pathological gambling (PG) is a behavioural addiction associated with elevated impulsivity and suspected dopamine dysregulation. Reduced striatal dopamine D2/D3 receptor availability has been reported in drug addiction, and may constitute a premorbid vulnerability marker for addictive disorders. The aim of the present study was to assess striatal dopamine D2/D3 receptor availability in PG, and its association with trait impulsivity. Males with PG (n = 9) and male healthy controls (n = 9) underwent [11C]-raclopride positron emission tomography imaging and completed the UPPS-P impulsivity scale. There was no significant difference between groups in striatal dopamine D2/D3 receptor availability, in contrast to previous reports in drug addiction. However, mood-related impulsivity (‘Urgency’) was negatively correlated with [11C]-raclopride binding potentials in the PG group. The absence of a group difference in striatal dopamine binding implies a distinction between behavioural addictions and drug addictions. Nevertheless, our data indicate heterogeneity in dopamine receptor availability in disordered gambling, such that individuals with high mood-related impulsivity may show differential benefits from dopamine-based medications.
Highlights
► Assessed 11C-raclopride binding in pathological gambling, a putative behavioral addiction. ► No group difference in striatal dopamine binding from healthy controls. ► Dopamine binding negatively correlated with mood-related impulsivity (‘Urgency’).
doi:10.1016/j.neuroimage.2012.06.067
PMCID: PMC3438449  PMID: 22776462
Gambling; Impulsivity; Dopamine; Neuroimaging; Addiction; Striatum
8.  Imaging of Microglia in Patients with Neurodegenerative Disorders 
Microglia constitute the main immune defense in the central nervous system. In response to neuronal injury, microglia become activated, acquire phagocytic properties, and release a wide range of pro-inflammatory mediators that are essential for the annihilation of the neuronal insult. Although the role of microglial activation in acute neuronal damage is well defined, the pathophysiological processes underlying destructive or protective role to neurons following chronic exposure to microglial activation is still a subject of debate. It is likely that chronic exposure induces detrimental effects by promoting neuronal death through the release of neurotoxic factors. Positron emission tomography (PET) imaging with the use of translocator protein (TSPO) radioligands provides an in vivo tool for tracking the progression and severity of neuroinflammation in neurodegenerative disease. TSPO expression is correlated to the extent of microglial activation and the measurement of TSPO uptake in vivo with PET is a useful indicator of active disease. Although understanding of the interaction between radioligands and TSPO is not completely clear, there is a wide interest in application of TSPO imaging in neurodegenerative disease. In this article, we aim to review the applications of in vivo microglia imaging in neurodegenerative disorders such as Parkinson’s disease, Huntington’s disease, Dementias, and Multiple Sclerosis.
doi:10.3389/fphar.2012.00096
PMCID: PMC3361961  PMID: 22661951
dementia; Huntington; microglia; multiple sclerosis; Parkinson; PET; PK11195
9.  Persistent Nigrostriatal Dopaminergic Abnormalities in Ex-Users of MDMA (‘Ecstasy'): An 18F-Dopa PET Study 
Neuropsychopharmacology  2010;36(4):735-743.
Ecstasy (±3,4-methylenedioxymethamphetamine, MDMA) is a popular recreational drug with known serotonergic neurotoxicity. Its long-term effects on dopaminergic function are less certain. Studying the long-term effects of ecstasy is often confounded by concomitant polydrug use and the short duration of abstinence. We used 18F-dopa positron emission tomography (PET) to investigate the long-term effects of ecstasy on nigrostriatal dopaminergic function in a group of male ex-recreational users of ecstasy who had been abstinent for a mean of 3.22 years. We studied 14 ex-ecstasy users (EEs), 14 polydrug-using controls (PCs) (matched to the ex-users for other recreational drug use), and 12 drug-naive controls (DCs). Each participant underwent one 18F-dopa PET, cognitive assessments, and hair and urinary analyses to corroborate drug-use history. The putamen 18F-dopa uptake of EEs was 9% higher than that of DCs (p=0.021). The putamen uptake rate of PCs fell between the other two groups, suggesting that the hyperdopaminergic state in EEs may be due to the combined effects of ecstasy and polydrug use. There was no relationship between the amount of ecstasy used and striatal 18F-dopa uptake. Increased putaminal 18F-dopa uptake in EEs after an abstinence of >3 years (mean) suggests that the effects are long lasting. Our findings suggest potential long-term effects of ecstasy use, in conjunction with other recreational drugs, on nigrostriatal dopaminergic functions. Further longitudinal studies are required to elucidate the significance of these findings as they may have important public health implications.
doi:10.1038/npp.2010.201
PMCID: PMC3037848  PMID: 21160467
MDMA; ecstasy; addiction; dopamine; F-dopa; PET; addiction & substance abuse; dopamine; imaging, clinical or preclinical; psychopharmacology; ecstasy
10.  Persistent nigrostriatal dopaminergic abnormalities in ex-users of MDMA (‘Ecstasy’): an 18F-dopa PET study 
Ecstasy (MDMA) is a popular recreational drug with known serotonergic neurotoxicity. Its long-term effects on dopaminergic function are less certain. Studying the long-term effects of ecstasy is often confounded by concomitant polydrug use and the short duration of abstinence. We used 18F-dopa positron emission tomography (PET) to investigate the long-term effects of ecstasy on nigrostriatal dopaminergic function in a group of male ex-recreational users of ecstasy who had been abstinent for a mean 3·22 years. We studied 14 ex-ecstasy users, 14 polydrug-using controls (matched to the ex-users for other recreational drug use) and 12 drug-naïve controls. Each participant underwent one 18F-dopa PET, cognitive assessments, and hair and urinary analysis to corroborate drug use history. The putamen 18F-dopa uptake of ex-ecstasy users was 9% higher than drug-naïve controls (p=0·021). The putamen uptake of polydrug-using controls fell between the other two groups, suggesting the hyperdopaminergic state in ex-ecstasy users may be due to the combined effects of ecstasy and polydrug use. There was no relationship between the amount of ecstasy use and striatal 18F-dopa uptake. Increased putaminal 18F-dopa uptake in ex-ecstasy users after an abstinence of over three years (mean) suggests that the effects are long-lasting. Our findings suggest potential long-term effects of ecstasy use, in conjunction with other recreational drugs, on nigrostriatal dopaminergic functions. Further longitudinal studies are needed to elucidate the significance of these findings as they may have important public health implications.
doi:10.1038/npp.2010.201
PMCID: PMC3037848  PMID: 21160467
MDMA; ecstasy; addiction; dopamine; F-dopa; PET

Results 1-10 (10)