Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
author:("phoma, Elena")
2.  A New Approach for Determining Phase Response Curves Reveals that Purkinje Cells Can Act as Perfect Integrators 
PLoS Computational Biology  2010;6(4):e1000768.
Cerebellar Purkinje cells display complex intrinsic dynamics. They fire spontaneously, exhibit bistability, and via mutual network interactions are involved in the generation of high frequency oscillations and travelling waves of activity. To probe the dynamical properties of Purkinje cells we measured their phase response curves (PRCs). PRCs quantify the change in spike phase caused by a stimulus as a function of its temporal position within the interspike interval, and are widely used to predict neuronal responses to more complex stimulus patterns. Significant variability in the interspike interval during spontaneous firing can lead to PRCs with a low signal-to-noise ratio, requiring averaging over thousands of trials. We show using electrophysiological experiments and simulations that the PRC calculated in the traditional way by sampling the interspike interval with brief current pulses is biased. We introduce a corrected approach for calculating PRCs which eliminates this bias. Using our new approach, we show that Purkinje cell PRCs change qualitatively depending on the firing frequency of the cell. At high firing rates, Purkinje cells exhibit single-peaked, or monophasic PRCs. Surprisingly, at low firing rates, Purkinje cell PRCs are largely independent of phase, resembling PRCs of ideal non-leaky integrate-and-fire neurons. These results indicate that Purkinje cells can act as perfect integrators at low firing rates, and that the integration mode of Purkinje cells depends on their firing rate.
Author Summary
By observing how brief current pulses injected at different times between spikes change the phase of spiking of a neuron (and thus obtaining the so-called phase response curve), it should be possible to predict a full spike train in response to more complex stimulation patterns. When we applied this traditional protocol to obtain phase response curves in cerebellar Purkinje cells in the presence of noise, we observed a triangular region devoid of data points near the end of the spiking cycle. This “Bermuda Triangle” revealed a flaw in the classical method for constructing phase response curves. We developed a new approach to eliminate this flaw and used it to construct phase response curves of Purkinje cells over a range of spiking rates. Surprisingly, at low firing rates, phase changes were independent of the phase of the injected current pulses, implying that the Purkinje cell is a perfect integrator under these conditions. This mechanism has not yet been described in other cell types and may be crucial for the information processing capabilities of these neurons.
PMCID: PMC2861707  PMID: 20442875

Results 1-2 (2)