Search tips
Search criteria

Results 1-21 (21)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum: prevalences and investigations on a new transmission path in small mammals and ixodid ticks 
Parasites & Vectors  2014;7(1):563.
Small mammals are crucial for the life history of ixodid ticks, but their role and importance in the transmission cycle of tick-borne pathogens is mostly unknown. Candidatus Neoehrlichia mikurensis (CNM) and Anaplasma phagocytophilum are both tick-borne pathogens, and rodents are discussed to serve as main reservoir hosts for CNM but not for the latter especially in Germany. Analysing the prevalence of both pathogens in small mammals and their ticks in endemic regions may help to elucidate possible transmission paths in small mammal populations and between small mammals and ticks.
In 2012 and 2013, small mammals were trapped at three different sites in Germany. DNA was extracted from different small mammal tissues, from rodent neonates, foetuses and from questing and attached ticks. DNA samples were tested for CNM and A. phagocytophilum by real-time PCR. Samples positive for A. phagocytophilum were further characterized at the 16S rRNA gene locus.
CNM was detected in 28.6% of small mammals and in 2.2% of questing and 3.8% of attached ticks. Altogether 33 positive ticks were attached to 17 different hosts, while positive ticks per host ranged between one and seven. The prevalences for this pathogen differed significantly within small mammal populations comparing sites (χ2: 13.3987; p: 0.0004) and between sexes. Male rodents had an approximately two times higher chance of infection than females (OR: 1.9652; 95% CI: 1.32-2.92). The prevalence for CNM was 31.8% (95% CI: 22-44) in rodent foetuses and neonates (23 of 67) from positive dams, and 60% (95% CI: 35.7-80.25) of positive gravid or recently parturient rodents (9 out of 15) had at least one positive foetus or neonate. Anaplasma phagocytophilum was detected at a low percentage in rodents (0-5.6%) and host-attached ticks (0.5-2.9%) with no significant differences between rodent species. However, attached nymphs were significantly more often infected than attached larvae (χ2: 25.091; p: <0.0001).
This study suggests that CNM is mainly a rodent-associated pathogen and provides evidence for a potential transplacental transmission in rodents. In contrast, most of the rodent species captured likely represent only accidental hosts for A. phagocytophilum at the investigated sites.
PMCID: PMC4264555  PMID: 25465390
Candidatus Neoehrlichia mikurensis; Anaplasma phagocytophilum; Ixodes ricinus; Emerging pathogen; Small mammals; Tick-borne Pathogen
2.  Strongyle infections and parasitic control strategies in German horses ― a risk assessment 
BMC Veterinary Research  2014;10(1):262.
As a consequence of the increasing levels of anthelmintic resistance in cyathostomes, new strategies for equine parasite control are being implemented. To assess the potential risks of these, the occurrence of strongyles was evaluated in a group of 1887 horses. The distribution of fecal egg counts (FECs), the frequency of anthelmintic drug use, and the deworming intervals were also analyzed. Between June 2012 and May 2013, 1887 fecal samples from either selectively or strategically dewormed horses were collected at 195 horse farms all over Germany and analyzed quantitatively with a modified McMaster technique. All samples with FEC ≥20 eggs per gram (EPG) were subjected to coproculture to generate third-stage larvae (LIII) for species differentiation.
Egg counts were below the limit of detection (20 EPG) in 1046 (55.4%) samples and above it in 841 (44.6%) samples. Strongylus vulgaris larvae were identified in two of the 841 positive samples. Infections with cyathostomes were found on every farm. The most frequently applied anthelmintic was ivermectin (788/50.8%), followed by pyrantel (336/21.6%). The mean time since last treatment was 6.3 months. High-egg-shedding (>500 EPG) strategically dewormed horses (183/1357) were treated, on average, three times/year. The planned treatment date was already exceeded by 72.5% of the high egg-shedders and by 58.1% of the moderate (200–500 EPG) and low egg-shedders (20–199 EPG).
S. vulgaris seems to be rare in Germany and no difference in its frequency has yet been found between selectively treated horses and horses receiving treatment in strategic intervals. However, inconsistent parasite control has been observed. Therefore, to minimize the risks for disease, consistent and efficient parasite control should be implemented.
PMCID: PMC4232665  PMID: 25387542
Parasite control; Strongyle; S. vulgaris; Germany; Larval culture; FEC; Diagnosis; Selective anthelmintic therapy; Equine
3.  Diversity of Babesia and Rickettsia Species in Questing Ixodes ricinus: A Longitudinal Study in Urban, Pasture, and Natural Habitats 
In a previous study, our group investigated the Babesia spp. prevalence in questing Ixodes ricinus ticks from nine city parks in South Germany in the years 2009 and 2010. We showed predominant prevalence of B. venatorum (in previous literature also known as Babesia sp. EU1), especially in those parks in a more natural condition and with occurrence of large wild animals, such as roe deer. To obtain longitudinal data and to broaden the knowledge about this pathogen, further investigations were carried out in 2011 and 2012 in four of those city parks. Two additional habitat types were chosen for comparison of prevalence data and species analysis focusing on occurrence of potential reservoir hosts. A total of 10,303 questing I. ricinus were collected in four city parks, a pasture, and a natural area in Bavaria, and a representative number of samples were investigated for prevalence of DNA of Babesia spp. (n=4381) and Rickettsia spp. (n=2186) by PCR. In the natural and pasture area, a significantly higher Babesia spp. prevalence compared to the urban area was detected. The natural area revealed sequences of B. microti, B. venatorum, and B. capreoli. In the pasture and urban habitat, predominantly B. venatorum was found, whereas B. capreoli was less frequent and only one B. microti–infected tick was found. All B. microti sequences were 100% identical to the zoonotic Jena/Germany strain. For Rickettsia spp., the significantly highest prevalence was also detected in the natural and pasture areas, whereas lower prevalence was found in the urban area. Sequence analysis revealed R. helvetica (98%) and R. monacensis (2%). Prevalence rates and occurrence of Babesia spp. and Rickettsia spp. differed in urban, pasture and natural sites, most likely depending on the habitat structure (natural or cultivated) and therefore on the appearance and availability of reservoir hosts like roe deer or small mammals.
PMCID: PMC3741418  PMID: 23697771
Babesia spp.; Rickettsia spp.; Ixodes ricinus; Reservoir host; Habitat types
4.  Giardiosis and other enteropathogenic infections: a study on diarrhoeic calves in Southern Germany 
BMC Research Notes  2014;7:112.
Diarrhoea induces massive problems in the rearing of calves. The aim of the study was to obtain current data about the frequency of Giardia spp., Cryptosporidium spp. and Eimeria spp. in diarrhoeic calves in Southern Germany with the particular focus on giardiosis.
1564 samples were analysed for the three pathogens using microscopical methods. Giardia spp. was detectable in 112/1564 samples (7.2%). The mean age was 46.5 days and the odds of being infected with Giardia spp. increased slowly up to 8 times from about 12 days to 30 days of age. There appeared to be no seasonal influence on the frequency of Giardia spp. A mono-infection with Giardia spp. was diagnosed in 46 calves (2.9%) whereas 15 calves (1.0%) had a mixed-infection with Cryptosporidium spp. and 51 calves (3.3%) with Eimeria spp. Cryptosporidium spp. and Eimeria spp. could be detected in 646/1564 samples (41.3%) and 208/1564 samples (13.3%), respectively, with a mean age of 11.3 and 55.0 days, respectively. The odds of being infected with Cryptosporidium spp. increased up to 4.5 times until an age of 10 days. After that the odds decreased continuously and was approaching zero at about 30 days. The odds of being infected with Eimeria spp. increased continuously up to 30 times from about 20 days to 60 days of age. There appeared to be no significant seasonal influence on the frequency of Cryptosporidium spp.; but there was one for Eimeria spp.: the odds of being infected with Eimeria spp. in March and April decreased by about half and increased up to 2.3 times between July and September.
Additionally, as requested by the veterinarians, 1282 of those samples were analysed for E. coli, Rota-, Coronavirus and Cryptosporidium spp. using an ELISA. Obtained frequencies for these pathogens were 0.9%, 37.8%, 3.4% and 45.3% with a mean age of 24.8 days, 12.1 days, 9.0 days and 12.1 days, respectively.
The results indicate that in Southern Germany in addition to Eimeria spp., Giardia spp. seems to play a contributing role in diarrhoea in older calves, whereas Cryptosporidium spp. and Rotavirus are mostly relevant in young calves.
PMCID: PMC3941484  PMID: 24568139
Giardia; Cryptosporidium; Eimeria; E. coli; Rotavirus; Coronaviurs; Calf; Diarrhoea; Epidemiology; Prevalence
5.  Survey of Toxoplasma gondii and Neospora caninum, haemotropic mycoplasmas and other arthropod-borne pathogens in cats from Albania 
Parasites & Vectors  2014;7:62.
Albania is a country on the western part of the Balkan Peninsula. The Mediterranean climate is favourable for the stable development of many arthropod species, which are incriminated as vectors for various agents. Recently, several papers have reported on epidemiological aspects of parasitic diseases including vector-borne disease agents of dogs with zoonotic characteristics in Albania. However, data on the epidemiology of feline parasitic and bacterial agents in Albania is scarce.
Serum and EDTA-blood samples collected from 146 domestic cats from Tirana during 2008 through 2010 were examined for exposure to Toxoplasma gondii, Neospora caninum, Leishmania infantum, and Anaplasma spp. with IFAT, for infection with L. infantum, A. phagocytophilum, Bartonella spp. and haemotropic mycoplasmas with conventional PCR and real-time PCR and for Dirofilaria immitis with antigen ELISA. Additionally blood smear microscopy was carried out for detection of blood-borne pathogens.
Antibodies to T. gondii (titre ≥1:100) were demonstrated in 91 cats (62.3%). Antibodies to N. caninum (titre ≥1:100), L. infantum (titre ≥1:64) and Anaplasma spp. (titre ≥1:100) were found in the serum of 15 (10.3%), 1 (0.7%) or 3 (2.1%) cats, respectively. DNA of haemotropic mycoplasmas was detected in the blood of 45 cats (30.8%), namely Candidatus Mycoplasma haemominutum (21.9%), Mycoplasma haemofelis (10.3%), and Candidatus Mycoplasma turicensis (5.5%), with ten cats harbouring co-infections of two mycoplasmas each; blood from one cat was PCR positive for Bartonella henselae. No DNA of Leishmania spp. and A. phagocytophilum or circulating D. immitis antigen was detected in any cat sample. The overall prevalence of haemotropic mycoplasmas was significantly higher in male compared to female cats (40.6% vs. 24.1%, p = 0.0444); and age was associated positively with the prevalence of antibodies to T. gondii (p = 0.0008) and the percentage of haemotropic mycoplasma infection (p = 0.0454).
With the broad screening panel including direct and indirect methods applied in the present study, a wide spectrum of exposure to or infection with parasitic or bacterial agents was detected.
PMCID: PMC3926860  PMID: 24517118
Cat; Albania; Toxoplasma gondii; Neospora caninum; Leishmania infantum; Anaplasma spp.; Bartonella henselae; haemotropic mycoplasmas
6.  Molecular identification of zoonotic and livestock-specific Giardia-species in faecal samples of calves in Southern Germany 
Parasites & Vectors  2013;6:346.
Giardia-infection in cattle is often subclinical or asymptomatic, but it can also cause diarrhoea. The livestock-specific species Giardia bovis is the most frequently observed in cattle, however, the two zoonotic species Giardia duodenalis and Giardia enterica have also been found. Therefore calves are thought to be of public health significance. The aim of this study was to obtain current data about the frequency of the different Giardia-species in calves in Southern Germany.
Faecal samples of calves (diarrhoeic and healthy) in Southern Germany, diagnosed Giardia-positive by microscopy, were characterised by multi-locus PCR and sequencing.
Of 152 microscopically Giardia-positive samples 110 (72.4%) were positive by PCR and successfully sequenced. G. bovis (Assemblage E) was detected in 101/110 (91.8%) PCR-positive samples, whilst G. duodenalis (Assemblage A) was detected in 8/110 (7.3%) samples and a mixed infection with G. duodenalis and G. bovis (Assemblage A+E) was identified in 1/110 (0.9%) samples. The sub-genotypes A1, E2 and E3 were identified with the β-giardin and the glutamate dehydrogenase genes. In the majority of diarrhoeic faecal samples a co-infection with Cryptosporidium spp. or Eimeria spp. was present, however, there were some in which G. bovis was the only protozoan pathogen found.
The results suggest that there is potentially a risk for animal handlers as calves in Southern Germany are, at a low percentage, infected with the zoonotic species G. duodenalis. In addition, it was found that G. bovis was the only pathogen identified in some samples of diarrhoeic calves, indicating that this parasite may be a contributing factor to diarrhoea in calves.
PMCID: PMC4029387  PMID: 24326081
PCR; Diarrhoea; Protozoan; Giardia assemblages; Cattle; Giardia duodenalis morphological group
7.  Anaplasma phagocytophilum in Questing Ixodes ricinus Ticks: Comparison of Prevalences and Partial 16S rRNA Gene Variants in Urban, Pasture, and Natural Habitats 
Urban, natural, and pasture areas were investigated for prevalences and 16S rRNA gene variants of Anaplasma phagocytophilum in questing Ixodes ricinus ticks. The prevalences differed significantly between habitat types, and year-to-year variations in prevalence and habitat-dependent occurrence of 16S rRNA gene variants were detected.
PMCID: PMC3591944  PMID: 23263964
8.  Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe 
Many factors are involved in determining the latitudinal and altitudinal spread of the important tick vector Ixodes ricinus (Acari: Ixodidae) in Europe, as well as in changes in the distribution within its prior endemic zones. This paper builds on published literature and unpublished expert opinion from the VBORNET network with the aim of reviewing the evidence for these changes in Europe and discusses the many climatic, ecological, landscape and anthropogenic drivers. These can be divided into those directly related to climatic change, contributing to an expansion in the tick’s geographic range at extremes of altitude in central Europe, and at extremes of latitude in Scandinavia; those related to changes in the distribution of tick hosts, particularly roe deer and other cervids; other ecological changes such as habitat connectivity and changes in land management; and finally, anthropogenically induced changes. These factors are strongly interlinked and often not well quantified. Although a change in climate plays an important role in certain geographic regions, for much of Europe it is non-climatic factors that are becoming increasingly important. How we manage habitats on a landscape scale, and the changes in the distribution and abundance of tick hosts are important considerations during our assessment and management of the public health risks associated with ticks and tick-borne disease issues in 21st century Europe. Better understanding and mapping of the spread of I. ricinus (and changes in its abundance) is, however, essential to assess the risk of the spread of infections transmitted by this vector species. Enhanced tick surveillance with harmonized approaches for comparison of data enabling the follow-up of trends at EU level will improve the messages on risk related to tick-borne diseases to policy makers, other stake holders and to the general public.
PMCID: PMC3549795  PMID: 23281838
Tick; Ixodes; Europe; Distribution; Climate; Ecology; Surveillance; Tick-borne disease
9.  Arthropod-borne infections in travelled dogs in Europe 
Parasite  2013;20:9.
Pet animal movement is ever increasing within the European Union and in that context canine vectorborne infections gained a considerable importance. Information on these infections in travelled dogs is nevertheless limited. A first prospective study on vector-borne infections was conducted in 106 dogs travelling from Germany to countries in South and South-East Europe. The dogs were screened prior to and consecutively up to three times after travel by haematological (Giemsa-stained buffy coat smears, Knott’s-Test), molecular biological (PCR) as well as serological (IFAT, DiroChek®-ELISA) methods for arthropod-borne infections. Seven animals were seropositive for antibodies against Babesia canis sspp., Leishmania spp. and/or Ehrlichia canis prior to travel to Italy, Spain, France, Croatia, Greece, or Hungary. In the consecutive screening after return there was no increase in the number of seropositive dogs. None was positive in direct methods. The mean duration of the stay was 17 days and 51% of the dogs were prophylactically treated with ectoparasiticidal formulations. Preliminary data from this study on canine vector-borne infections indicate a low risk for infection during a limited single stay in endemic countries.
PMCID: PMC3718538  PMID: 23477298
Vector-borne infections; Travelling dogs; Prophylaxis; Germany
10.  Candidatus Neoehrlichia mikurensis in rodents in an area with sympatric existence of the hard ticks Ixodes ricinus and Dermacentor reticulatus, Germany 
Parasites & Vectors  2012;5:285.
Candidatus Neoehrlichia mikurensis (CNM) has been described in the hard tick Ixodes ricinus and rodents as well as in some severe cases of human disease. The aims of this study were to identify DNA of CNM in small mammals, the ticks parasitizing them and questing ticks in areas with sympatric existence of Ixodes ricinus and Dermacentor reticulatus in Germany.
Blood, transudate and organ samples (spleen, kidney, liver, skin) of 91 small mammals and host-attached ticks from altogether 50 small mammals as well as questing I. ricinus ticks (n=782) were screened with a real-time PCR for DNA of CNM.
52.7% of the small mammals were positive for CNM-DNA. The majority of the infected animals were yellow-necked mice (Apodemus flavicollis) and bank voles (Myodes glareolus). Small mammals with tick infestation were more often infected with CNM than small mammals without ticks. Compared with the prevalence of ~25% in the questing I. ricinus ticks, twice the prevalence in the rodents provides evidence for their role as reservoir hosts for CNM.
The high prevalence of this pathogen in the investigated areas in both rodents and ticks points towards the need for more specific investigation on its role as a human pathogen.
PMCID: PMC3533915  PMID: 23216786
Candidatus Neoehrlichia mikurensis; Bank vole; Yellow-necked mouse; Ixodes ricinus; Dermacentor reticulatus; Recreational area; Host survey; Vector-host relation
11.  Babesia spp. and Anaplasma phagocytophilum in questing ticks, ticks parasitizing rodents and the parasitized rodents – Analyzing the host-pathogen-vector interface in a metropolitan area 
Parasites & Vectors  2012;5:191.
The aims of this study were to evaluate the host-tick-pathogen interface of Babesia spp. and Anaplasma phagocytophilum in restored areas in both questing and host-attached Ixodes ricinus and Dermacentor reticulatus and their small mammalian hosts.
Questing ticks were collected from 5 sites within the city of Leipzig, Germany, in 2009. Small mammals were trapped at 3 of the 5 sites during 2010 and 2011. DNA extracts of questing and host-attached I. ricinus and D. reticulatus and of several tissue types of small mammals (the majority bank voles and yellow-necked mice), were investigated by PCR followed by sequencing for the occurrence of DNA of Babesia spp. and by real-time PCR for A. phagocytophilum. A selected number of samples positive for A. phagocytophilum were further investigated for variants of the partial 16S rRNA gene. Co-infection with Rickettsia spp. in the questing ticks was additionally investigated.
4.1% of questing I. ricinus ticks, but no D. reticulatus, were positive for Babesia sp. and 8.7% of I. ricinus for A. phagocytophilum. Sequencing revealed B. microti, B. capreoli and Babesia spp. EU1 in Leipzig and sequence analysis of the partial 16S RNA gene of A. phagocytophilum revealed variants either rarely reported in human cases or associated with cervid hosts. The statistical analysis revealed significantly less ticks infected with A. phagocytophilum in a city park in Leipzig as compared to the other sampling sites. A. phagocytophilum-DNA was detected in 2 bank voles, DNA of B. microti in 1 striped field-mouse and of Babesia sp. EU1 in the skin tissue of a mole. Co-infections were detected.
Our results show the involvement of small mammals in the natural endemic cycles of tick-borne pathogens. A more thorough understanding of the interactions of ticks, pathogens and hosts is the essential basis for effective preventive control measures.
PMCID: PMC3480827  PMID: 22950642
Babesia spp; Anaplasma phagocytophilum; Ixodes ricinus; Dermacentor reticulatus; Bank vole; Yellow-necked mouse; Recreational area; Host survey; Vector-host relation
13.  Genetic variants of Anaplasma phagocytophilum from 14 equine granulocytic anaplasmosis cases 
Parasites & Vectors  2011;4:161.
Equine Granulocytic Anaplasmosis (EGA) is caused by Anaplasma phagocytophilum, a tick-transmitted, obligate intracellular bacterium. In Europe, it is transmitted by Ixodes ricinus. A large number of genetic variants of A. phagocytophilum circulate in nature and have been found in ticks and different animals. Attempts have been made to assign certain genetic variants to certain host species or pathologies, but have not been successful so far. The purpose of this study was to investigate the causing agent A. phagocytophilum of 14 cases of EGA in naturally infected horses with molecular methods on the basis of 4 partial genes (16S rRNA, groEL, msp2, and msp4).
All DNA extracts of EDTA-blood samples of the horses gave bands of the correct nucleotide size in all four genotyping PCRs. Sequence analysis revealed 4 different variants in the partial 16S rRNA, groEL gene and msp2 genes, and 3 in the msp4 gene. One 16S rRNA gene variant involved in 11 of the 14 cases was identical to the "prototype" variant causing disease in humans in the amplified part [GenBank: U02521]. Phylogenetic analysis revealed as expected for the groEL gene that sequences from horses clustered separately from roe deer. Sequences of the partial msp2 gene from this study formed a separate cluster from ruminant variants in Europe and from all US variants.
The results show that more than one variant of A. phagocytophilum seems to be involved in EGA in Germany. The comparative genetic analysis of the variants involved points towards different natural cycles in the epidemiology of A. phagocytophilum, possibly involving different reservoir hosts or host adaptation, rather than a strict species separation.
PMCID: PMC3170280  PMID: 21843364
14.  Occurrence of Babesia spp., Rickettsia spp. and Bartonella spp. in Ixodes ricinus in Bavarian public parks, Germany 
Parasites & Vectors  2011;4:135.
Only limited information is available about the occurrence of ticks and tick-borne pathogens in public parks, which are areas strongly influenced by human beings. For this reason, Ixodes ricinus were collected in public parks of different Bavarian cities in a 2-year survey (2009 and 2010) and screened for DNA of Babesia spp., Rickettsia spp. and Bartonella spp. by PCR. Species identification was performed by sequence analysis and alignment with existing sequences in GenBank. Additionally, coinfections with Anaplasma phagocytophilum were investigated.
The following prevalences were detected: Babesia spp.: 0.4% (n = 17, including one pool of two larvae) in 2009 and 0.5 to 0.7% (n = 11, including one pool of five larvae) in 2010; Rickettsia spp.: 6.4 to 7.7% (n = 285, including 16 pools of 76 larvae) in 2009. DNA of Bartonella spp. in I. ricinus in Bavarian public parks could not be identified. Sequence analysis revealed the following species: Babesia sp. EU1 (n = 25), B. divergens (n = 1), B. divergens/capreoli (n = 1), B. gibsoni-like (n = 1), R. helvetica (n = 272), R. monacensis IrR/Munich (n = 12) and unspecified R. monacensis (n = 1). The majority of coinfections were R. helvetica with A. phagocytophilum (n = 27), but coinfections between Babesia spp. and A. phagocytophilum, or Babesia spp. and R. helvetica were also detected.
I. ricinus ticks in urban areas of Germany harbor several tick-borne pathogens and coinfections were also observed. Public parks are of particularly great interest regarding the epidemiology of tick-borne pathogens, because of differences in both the prevalence of pathogens in ticks as well as a varying species arrangement when compared to woodland areas. The record of DNA of a Babesia gibsoni-like pathogen detected in I. ricinus suggests that I. ricinus may harbor and transmit more Babesia spp. than previously known. Because of their high recreational value for human beings, urban green areas are likely to remain in the research focus on public health issues.
PMCID: PMC3154157  PMID: 21762494
15.  Spotted Fever Group Rickettsiae in Ticks, Germany 
Emerging Infectious Diseases  2011;17(5):890-892.
To explore increased risk for human Rickettsia spp. infection in Germany, we investigated recreational areas and renatured brown coal surface-mining sites (also used for recreation) for the presence of spotted fever group rickettsiae in ticks. R. raoultii (56.7%), R. slovaca (13.3%), and R. helvetica (>13.4%) were detected in the respective tick species.
PMCID: PMC3321775  PMID: 21529404
Rickettsia; vector-borne infections; bacteria; ticks Germany; dispatch
16.  Anaplasma phagocytophilum infection in a domestic cat in Finland: Case report 
Anaplasmosis is a vectorborne disease caused by the gram-negative bacterium Anaplasma phagocytophilum. This species displays positive tropism to granulocytes and can cause illness in several mammalian species, including cats, dogs, and humans. It is considered as an emerging disease in Europe. The clinical signs are nonspecific and include fever, lethargy, and inappetence. The most typical hematologic abnormality is thrombocytopenia. A tentative diagnosis can be made by detecting intracytoplasmic morulae inside neutrophils. The diagnosis is confirmed by PCR and serology in paired serum samples. A sample for PCR analysis should be taken before treatment. Anaplasmosis is treated with doxycycline.
Case presentation
A feline case of anaplasmosis is presented. The history, clinical presentation, diagnostics, treatment, and follow-up are discussed.
This case indicates that Anaplasma phagocytophilum infects cats in Finland. To provide accurate treatment, anaplasmosis should be listed as a differential diagnosis in cats suffering from acute febrile illness with previous tick exposure.
PMCID: PMC2996389  PMID: 21078141
17.  Protein expression profile of Gasterophilus intestinalis larvae causing horse gastric myiasis and characterization of horse immune reaction 
Little information is available on the immunological aspect of parasitic Gasterophilus intestinalis (Diptera, Oestridae) larvae causing horse gastric myiasis. The objectives of this research were to analyze the protein content of larval crude extracts of the migrating second and third larvae (L2 and L3) of G. intestinalis in order to characterize the immune response of horses.
The proteomic profile of L2 and L3, investigated by using one and two dimensional approaches, revealed a migration pattern specific to each larval stage. Furthermore, Western blots were performed with horse sera and with sera of Balb/c mice immunised with the larval crude extracts of L2 or L3, revealing a different immune reaction in naturally infected horses vs. artificially induced immune reaction in mice. The comparisons of the immunoblot profiles demonstrate that the stage L2 is more immunogenic than the stage L3 most likely as an effect of the highest enzymatic production of L2 while migrating through the host tissues. Fifteen proteins were identified by mass spectrometry.
This work provides further information into the understanding of the interaction between G. intestinalis and their host and by contributing a novel scheme of the proteomic profile of the main larval stages.
PMCID: PMC2633288  PMID: 19133133
18.  Rickettsia felis in Fleas, Germany 
Emerging Infectious Diseases  2008;14(8):1294-1296.
Among 310 fleas collected from dogs and cats in Germany, Rickettsia felis was detected in all specimens (34) of Archaeopsylla erinacei (hedgehog flea) and in 9% (24/226) of Ctenocephalides felis felis (cat flea). R. helvetica was detected in 1 Ceratophyllus gallinae (hen flea).
PMCID: PMC2600387  PMID: 18680660
Rickettsia felis; fleas; Germany; dispatch
19.  Anaplasma phagocytophilum Infection in Ixodes ricinus, Bavaria, Germany 
Emerging Infectious Diseases  2008;14(6):972-974.
Anaplasma phagocytophilum DNA was detected by real-time PCR, which targeted the msp2 gene, in 2.9% of questing Ixodes ricinus ticks (adults and nymphs; n = 2,862), collected systematically from selected locations in Bavaria, Germany, in 2006. Prevalence was significantly higher in urban public parks in Munich than in natural forests.
PMCID: PMC2600299  PMID: 18507918
Anaplasma phagocytophilum; prevalence; ticks; Ixodes ricinus; molecular epidemiology; Bavaria; Germany; dispatch
20.  Rickettsia felis in Fleas, France 
Emerging Infectious Diseases  2008;14(4):684-686.
PMCID: PMC2570947  PMID: 18394302
Rickettsia felis; France; polymerase chain reaction; Ctenocephalis felis; Ctenocephalis canis; Archaeopsylla erinacei; letter
21.  PCR Detection and Serological Evidence of Granulocytic Ehrlichial Infection in Roe Deer (Capreolus capreolus) and Chamois (Rupicapra rupicapra) 
Journal of Clinical Microbiology  2002;40(3):892-897.
The role of wild mammals, such as roe deer (Capreolus capreolus) and chamois (Rupicapra rupicapra), in the epidemiology of granulocytic ehrlichiae in Switzerland was investigated. We tested blood samples for Ehrlichia phagocytophila genogroup 16S rRNA gene sequences by PCR and for immunoglobulin G antibodies against granulocytic ehrlichiae by indirect fluorescent-antibody assay (IFA). Overall means of 60.9% of 133 roe deer serum samples and 28.2% of 39 chamois serum samples were seroreactive by IFA. PCR results were positive for 18.4% of 103 roe deer serum samples as well. None of the 24 chamois blood samples tested were positive by PCR. Partial 16S rRNA gene and groESL heat shock operon sequences of three roe deer samples tested showed strong degrees of homology (≥99.7 and ≥98.6%, respectively) with the sequences of granulocytic ehrlichiae isolated from humans. These results confirm that chamois, and particularly roe deer, are commonly infected with granulocytic ehrlichiae and provide evidence that these wild mammals are potential reservoirs for granulocytic ehrlichiae in Switzerland.
PMCID: PMC120259  PMID: 11880411

Results 1-21 (21)